APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2019, Vol. 16 Issue (2): 246-255    DOI: 10.1007/s11770-018-0762-5
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |   
Stepwise inversion method for determining anisotropy parameters in a horizontal transversely isotropic formation
Song Yun-Hong, Chen Hao, and Wang Xiu-Ming
1. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
2. University of Chinese Academy of Sciences, Beijing, 100049, China.
3. Beijing Engineering Research Center of Sea Deep Drilling and Exploration, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
 Download: PDF (1240 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract The anisotropy of a geologic formation can reflect the direction of fractures and ground stress, which is an important metric that guides the exploration and development of oil and gas reservoirs. Cross-dipole acoustic logging is the main method used to detect anisotropy with borehole geophysics. In this paper, a stepwise inversion method for three anisotropy parameters in a horizontal transversely isotropic (HTI) formation is proposed, which turns one 3D operation of simultaneous inversion into three 1D operations. The scheme’s stability and reliability were tested by numerically simulated data using a finite-difference method, and by field logging data. The inversion results of the simulated data show that the stepwise inversion method can stably obtain the fast shear azimuth and the anisotropy parameters in both fast and slow formations with strong and weak anisotropy, and it performed well even with noisy data. In particular, the results of the fast shear azimuth inversion were very stable and reliable. The inversion results of field logging data were consistent with those given by existing commercial software, which used simultaneous inversion, for both fast and slow formations. Where large difference was observed between our stepwise method and the commercial software, our analysis suggests that the fast shear azimuth of our inversion was more reasonable, which reinforces its superior performance and practicality.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordscross-dipole   anisotropy   stepwise inversion     
Received: 2018-05-04;
Fund:

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 11574347, 11774373,11734017 and 91630309 and the PetroChina Innovation Foundation) (No.: 2016D-5007-0304).

Corresponding Authors: Chen Hao (Email: chh@mail.ioa.ac.cn)   
 E-mail: chh@mail.ioa.ac.cn
About author: Song Yun-Hong Ph.D. study at University of Chinese Academy of Sciences. Her main research directions are new forward and inversion methods of acoustic logging Email: songyh323@163.com. ?Corresponding author: Chen Hao, researcher. His main research direction is new logging methods and petrophysics. Email: chh@mail.ioa.ac.cn.
Cite this article:   
. Stepwise inversion method for determining anisotropy parameters in a horizontal transversely isotropic formation[J]. APPLIED GEOPHYSICS, 2019, 16(2): 246-255.
 
No references of article
[1] Luo Teng, Feng Xuan, Guo Zhi-Qi, Liu Cai, and Liu Xi-Wu. Seismic AVAZ inversion for orthorhombic shale reservoirs in the Longmaxi area, Sichuan[J]. APPLIED GEOPHYSICS, 2019, 16(2): 195-209.
[2] Li Qin, Ma Sui-Bo, Zhao Bin, and Zhang Wei. An improved rotated staggered grid finite difference scheme in coal seam*[J]. APPLIED GEOPHYSICS, 2018, 15(3-4(2)): 582-590.
[3] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[4] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[5] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[6] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[7] Qian Ke-Ran, He Zhi-Liang, Chen Ye-Quan, Liu Xi-Wu, Li Xiang-Yang. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale[J]. APPLIED GEOPHYSICS, 2017, 14(4): 463-480.
[8] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[9] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[10] Su Ben-Yu and Yue Jian-Hua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
[11] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[12] Song Lian-Teng, Liu Zhong-Hua, Zhou Can-Can, Yu Jun, Xiu Li-Jun, Sun Zhong-Chun, Zhang Hai-Tao. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
[13] Liu Xi-Wu, Guo Zhi-Qi, Liu Cai, Liu Yu-Wei. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
[14] He Yi-Yuan, Hu Tian-Yue, He Chuan, Tan Yu-Yang. P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion[J]. APPLIED GEOPHYSICS, 2016, 13(4): 649-657.
[15] Sergey Yaskevich, Georgy Loginov, Anton Duchkov, Alexandr Serdukov. Pitfalls of microseismic data inversion in the case of strong anisotropy[J]. APPLIED GEOPHYSICS, 2016, 13(2): 326-332.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn