APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (3-4): 500-512    DOI: 10.1007/s11770-018-0690-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface
Li Kun1,2,3, Chen Long-Wei4, Chen Qing-Rui1,2,3, Dai Shi-Kun1,2,3, Zhang Qian-Jiang1,2 ,3,4, Zhao Dong-Dong1,2,3, and Ling Jia-Xuan1,2,3
1. Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China.
2. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring of Ministry of Education, Central South University, Changsha 410083, China.
3. School of Geosciences and Info-Physics of Central South University, Changsha 410083, China.
4. School of College of Earth Sciences of Guilin University of Technology, Guilin 541004, China.
 Download: PDF (1758 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Magnetic field gradient tensor technique provides abundant data for delicate inversion of subsurface magnetic susceptibility distribution. Large scale magnetic data inversion imaging requires high speed and accuracy for forward modeling. For arbitrarily distributed susceptibility data on an undulated surface, we propose a fast 3D forward modeling method in the wavenumber domain based on (1) the wavenumber-domain expression of the prism combination model and the Gauss–FFT algorithm and (2) cubic spline interpolation. We apply the proposed 3D forward modeling method to synthetic data and use weighting coefficients in the wavenumber domain to improve the modeling for multiple observation surfaces, and also demonstrate the accuracy and efficiency of the proposed method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsUndulated surface   magnetic field   gradient tensor   3D forward modeling   Gauss–FFT algorithm   wavenumber domain     
Received: 2018-01-02;
Fund:

This work was supported by the National Special Plan for the 13th Five-Year Plan of China (No. 2017YFC0602204-10) and Independent Exploration of the Innovation Project for Graduate Students at Central South University (No. 2017zzts176) and National Natural Science Foundation of China (Nos. 41574127, 41404106, and 41674075) and Postdoctoral Fund Projects of China (No. 2017M622608) and National Key R&D Program of China (No. 2018YFC0603602) and Natural Science Youth Fund Project of the Hunan Province, China (No. 2018JJ3642).

Cite this article:   
. Fast 3D forward modeling of the magnetic field and gradient tensor on an undulated surface[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 500-512.
 
[1] Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.
[2] Burrows, B. L., and Colwell, D. J., 1990, The fourier transform of the unit step function: International Journal of Mathematical Education in Science and Technology, 21(4), 629-635.
[3] Chen, Z. X., Meng, X. H., and Liu, G. F., 2012, The GPU-based parallel calculation of gravity and magnetic anomalies for 3D arbitrary bodies: Geophysical and Geochemical Exploration, 36(1), 117-121.
[4] Chai, Y. P., 1996, Shift sampling theory about Fourier transform computation: Science in China (Series E), 26(5), 450-456.
[5] Eppelbaum, L. V., 2011, Study of magnetic anomalies over archaeological targets in urban environments: Physics & Chemistry of the Earth, 36(16), 1318-1330.
[6] Furness, P., 1994, A physical approach to computing magnetic fields: Geophysical Prospecting, 42(5), 405-416.
[7] Kangaziyan, M., Oskooi, B., and Namaki, L., 2012, Investigation of Topographic Effect on Synthetic Magnetic Data: Istanbul 2012-International Geophysical Conference and Oil & Gas Exhibition., 1-4.
[8] Li, S. L., and Li, Y. G., 2014, Inversion of magnetic anomaly on rugged observation surface in the presence of strong remanent magnetization: Geophysics, 79(2), J11-J19.
[9] Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., et al., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33-61.
[10] Naidu, P. S., and Mathew, M. P., 1994, Correlation filtering: a terrain correction method for aeromagnetic maps with application: Journal of Applied Geophysics, 32(2-3), 269-277.
[11] Prutkina, I., and Salehb, A., 2009, Gravity and magnetic data inversion for 3D topography of the Moho discontinuity in the northern Red Sea area: Egypt, J. Geodyn., 47(5), 237-245.
[12] Pedersen, L. B., Bastani, M., and Kamm, J., 2015, Gravity gradient and magnetic terrain effects for airborne applications -A practical fast Fourier transform technique: Geophysics, 80(2), J19-J26.
[13] Ren, Z. Y., Tang, J. T., and Kalscheuer, T., et al., 2017, Fast 3D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method: Journal of Geophysical Research, 122(1), 79-109.
[14] Singh, S. K., 1978, Magnetic Anomaly due to a Vertical Right Circular Cylinder with Arbitrary Polarization: Geophysics, 43(1), 173-178.
[15] Singh, B., and Guptasarma, D., 2001, New method for fast computation of gravity and magnetic anomalies from arbitrary polyhedra: Geophysics, 66(2), 521-526.
[16] Tontini, F. C., 2005, Magnetic-anomaly Fourier spectrum of a 3D Gaussian source: The Leading Edge, 70(1), L1-L5.
[17] Tontini, F. C., Cocchi, L., and Carmisciano, C., 2009, Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy): Journal of Geophysical Research Solid Earth, 114(B2), 1205-1222.
[18] Ugalde, H., and Morris, B., 2008, An assessment of topographic effects on airborne and ground magnetic data: Leading Edge, 27(1), 76-79.
[19] Wang, Y. Z., Wang, R. Q., and Chen, X. H., 2006, Signal analysis and processing: Petroleum Industry Press, China, 46-47.
[20] Wu, L. Y., and Tian, G., 2014, High-precision Fourier forward modeling of potential fields: Geophysics, 79(5), 59-68.
[21] Wu, L. Y., 2016, Efficient modelling of gravity effects due to topographic masses using the Gauss FFT method: Geophysical Journal International, 205(1), 160-178.
[22] Wu, L. Y., and Lin, Q., 2017, Improved Parker’s method for topographic models using Chebyshev series and low rank approximation: Geophysical Journal International, 209(2), 1296-1325.
[23] Wu, X. Z., 1983, The computation of spectrum of potential field due to 3-D arbitrary bodies with physical parameters varying with depth: Chinese Journal of Geophysics, 26(2), 177-187.
[24] Yao, C. L., Hao, T. Y., Guan, Z. N., et al., 2003, High-speed computation and efficient storage in 3-D gravity and magnetic inversion based on genetic algorithms: Chinese Journal of Geophysics, 46(2), 351-361.
[1] Feng Yan, Jiang Yun-Shan, Gu Jia-Lin, Xu Fan, Jiang Yi, Liu Shuang. Geomagnetic jerk extraction based on the covariance matrix[J]. APPLIED GEOPHYSICS, 2019, 16(2): 154-160.
[2] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[3] Feng Yan, Jiang Yong. Regional spatiotemporal variations of a nondipole magnetic field over the Chinese mainland and neighboring regions in millennial scale[J]. APPLIED GEOPHYSICS, 2017, 14(2): 314-321.
[4] Chen Hui, Deng Ju-Zhi Yin Min, Yin Chang-Chun, Tang Wen-Wu. Three-dimensional forward modeling of DC resistivity using the aggregation-based algebraic multigrid method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 154-164.
[5] Wang Tao, Tan Han-Dong, Li Zhi-Qiang, Wang Kun-Peng, Hu Zhi-Ming, Zhang Xing-Dong. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. APPLIED GEOPHYSICS, 2016, 13(3): 553-560.
[6] Kuang Xing-Tao, Yang Hai, Zhu Xiao-Ying, Li Wei. Singularity-free expression of magnetic field of cuboid under undulating terrain[J]. APPLIED GEOPHYSICS, 2016, 13(2): 238-248.
[7] Yin Chang-Chun, Zhang Ping, Cai Jing. Forward modeling of marine DC resistivity method for a layered anisotropic earth[J]. APPLIED GEOPHYSICS, 2016, 13(2): 279-287.
[8] Meng Qing-Xin, Pan He-Ping, Luo Miao. A study on the discrete image method for calculation of transient electromagnetic fields in geological media[J]. APPLIED GEOPHYSICS, 2015, 12(4): 493-502.
[9] DU Qi-Zhen, ZHANG Ming-Qiang, CHEN Xiao-Ran, GONG Xu-Fei, GUO Cheng-Feng. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
[10] YUAN Yuan, HUANG Da-Nian, YU Qing-Lu, GENG Mei-Xia. Noise filtering of full-gravity gradient tensor data[J]. APPLIED GEOPHYSICS, 2013, 10(3): 241-250.
[11] JIANG Fu-Yu, HUANG Yan, YAN Ke. Full gravity gradient tensors from vertical gravity by cosine transform[J]. APPLIED GEOPHYSICS, 2012, 9(3): 247-260.
[12] JIANG Fu-Yu, GAO Li-Kun. Edge enhancement of gravity anomalies and gravity gradient tensors using an improved small sub-domain filtering method*[J]. APPLIED GEOPHYSICS, 2012, 9(2): 119-130.
[13] CHEN Xue-Hua, YANG Wei, HE Zhen-Hua, ZHONG Wen-Li, WEN Xiao-Tao. The algorithm of 3D multi-scale volumetric curvature and its application*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 65-72.
[14] LI Shu-Ling, MENG Xiao-Hong, GUO Liang-Hui, YAO Chang-Li, CHEN Zhao-Xi, LI He-Qun. Gravity and magnetic anomalies field characteristics in the South China Sea and its application for interpretation of igneous rocks [J]. APPLIED GEOPHYSICS, 2010, 7(4): 295-305.
[15] CHAI Yu-Pu. A-E equation of potential field transformations in the wavenumber domain and its application[J]. APPLIED GEOPHYSICS, 2009, 6(3): 205-216.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn