APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2018, Vol. 15 Issue (3-4): 367-381    DOI: 10.1007/s11770-018-0693-6
article Current Issue | Next Issue | Archive | Adv Search  |  Next Articles  
Numerical simulation of fault activity owing to hydraulic fracturing
Hu Jun1,2, Cao Jun-Xing2, He Xiao-Yan2, Wang Quan-Feng1, and Xu Bin1
1. Chengdu University of Technology, Geomathematics Key Laboratory of Sichuan Province, Chengdu 610059, China.
2. Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610059, China.
 Download: PDF (2256 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We built a three-dimensional model to simulate the disturbance of the stress field near the reverse fault in Zhaziao, Leyi Township owing to hydraulic fracturing. The pore pressure, and shear and normal stresses  during fracturing are analyzed in detail. Input rock mechanics parameters are taken from laboratory test data of shale samples from the study area. The simulation results suggest that after 16 hours of fluid injection, the pore-pressure variation can activate the reverse fault, i.e., we observe reverse slip, and the shear stress and displacement on the fault plane increase with time. The biggest stress–strain change occurs after one hour of fluid injection and the yield point appears about 0.5 h after injection. To observe the stress evolution in each section, the normal displacement on the boundary is constrained and the fault plane is set as nonpermeable. Thus, the  sliding is limited and the shear displacement is only in the scale of millimeters, and the calculated magnitude of the induced earthquakes is between Mw-3.5 and Mw-0.2. The simulation results suggest that fluid water injection results in inhomogeneous fracturing. The main ruptured areas are around the injection positions, whereas the extent of rupturing and cracks in other areas are relatively small. Nevertheless, nonnegligible fault activation is recorded. Sensitivity analysis of the key parameters suggests that the pore pressure is most sensitive to the maximum unbalanced force and the internal friction angle strongly affects the fault slip. Finally, the comparison between the effective normal stress and the maximum and minimum principal stresses on the fault plane explains the fault instability, i.e., the Mohr circle moves towards the left with decreasing radius reduces and  intersects the critical slip envelope, and causes the fault to slip.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsHydraulic fracturing   pore pressure   fault activation   induced earthquakes   numerical simulation     
Received: 2018-03-02;
Fund:

The study was supported by the National Natural Science Foundation of China (Nos. 41604050 and 41774192).

Cite this article:   
. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 367-381.
 
[1] Kanamori, H., and Brodsky, E. E., 2004, The physics of earthquakes: Physics Today, 54(6), 1429−1496. Doi:10.1088/0034-4885/67/8/R03.
[2] Atkinson, C., Smelser, R. E., and Sanchez, J., 1982, Combined mode fracture via the cracked Brazilian disk test: International Journal of Fracture, 18(4), 279-291.
[3] Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H., 2017, Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China: Scientific reports, 7, 7971. Doi:10.1038/s41598-017-08557-y.
[4] Li, K., Zhang, H., Ran, C., and Shao, M. J., 2016, Productivity Model of Shale Gas Well with Consideration of Stress Sensitivity: Taking Longmaxi Formation Shale Gas Reservoir in Southeastern Sichuan Basin as an Example: Journal of Xi'an Shiyou University (Natural Science Edition), 31(3), 57−61. Doi: 10.3969/ j.issn.1673-064X.2016.03.009
[5] Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y. J., van der Baan, M., and Kao, H., 2016, Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin: Seismological Research Letter, 87(3), 631−647. Doi:10.1785/0220150263.
[6] Li, Q. H., Chen, M., Jin, Y., Hou, B., and Zhang, J. Z., 2012, Rock mechanical properties and brittleness evaluation of shale gas reservoir:. Petroleum Drilling Techniques, 40(4), 18−22. Doi:10.3969/ j.issn.1001-0890.2012.04.004.
[7] Bao, X. W., and Eaton, D. W., 2016, Fault activation by hydraulic fracturing in western Canada: Science, 354(6318), 1406−1409. Doi:10.1126/science.aag,2583.
[8] Li, Z. L., Zhang, H. C., Ren, Q. W., and Wang, Y. H., 2005, Analysis of hydraulic fracturing and calculation of critical internal water pressure of rock fracture: Rock and Soil Mechanics, 26(8), 1216−1220.
[9] Chen, J. G., Deng, J. G., Yuan, J. L., Yan, W., Yu, B. H., and Tan, Q., 2015, Determination of fracture toughness of modes I and II of shale formation: Chinese Journal of Rock Mechanics and Engineering, 34(6), 1101−105. Doi:10.13722/j.cnki.jrme.2014.1187.
[10] Liu, S. G., Ma, W. X., Luba, J., Huang, W. M., Zeng, X. L., and Zhang, C. J., 2011, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China: Acta Petrologica Sinica, 27(8), 2239−2252. Doi: 1000-0569/2011/027(08)-2239-52.
[11] Clarke, H., Eisner, L., Styles, P., and Turner, P., 2014. Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe. Geophysical Research Letters, 2015, 41(23), 8308−8314. Doi:10.1002/2014GL062047.
[12] Lund Snee, J. -E., and Zoback, M. D., 2016, State of stress in Texas: Implications for induced seismicity: Geophysical Research Letters, 43, 10208−10214. Doi:10.1002/2016GL070974.
[13] Crampin, S., Peacock, S., Gao, Y., and Chastin, S., 2004. The scatter of time-delays in shear-wave splitting above small earthquakes: Geophys. J. Int., 156, 39−44.
[14] McGarr, A., 1991, On a possible connection between three major earthquakes in California and oil production. BSSA, 81(3), 948−970.
[15] Crampin, S., and Gao, Y., 2013, The new geophysics: Terra Nova, 25(3), 173−180.
[16] McGarr, A., 2014, Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth. 119(2), 1008-1019. Doi:10.1002/2013JB010597.
[17] Plenefisch, T., and Bonjer, K. P., 1997, The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters: Tectonophysics, 275, 71−97.
[18] Deng, K., Liu, Y. J., and Harrington, R. M., 2016, Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence: Geophysical Research Letters, 43, 8482-8491. Doi:10.1002/2016GL070421.
[19] Ding, S. D., and Sun, L. M., 1997, Fracture mechanics: China Machine Press, Beijing.
[20] Schultz, R., Stern, V., Novakovic, M., Atkinson, G., and Gu, Y. J., 2015, Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks: Geophys. Res. Lett. 42, 2750−2758. Doi:10.1002/2015GL063455.
[21] Skoumal, R., Brudzinski, M. R., and Currie, B. S., 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio: Bull. Seismol. Soc. Am. 105(1), 189-197. Doi:10.1785/0120140168.
[22] Song, C. P., Lu, Y. Y., Jia, Y. Z., and Xia, B. W., 2014, Effect of Coal-Rock interface on hydraulic fracturing propagation: Journal of Northeastern University (Natural Science), 35(9), 1340-1345.
[23] Ellsworth, W. L., 2013, Injection-induced earthquakes: Science, 341(6142), 142. Doi:10.1126/science. 1225942.
[24] Wang, J. L., Liu, G. J., Wang, W. Z., Zhang, S. J., and Yuan, L. L., 2013, Characteristics of pore-fissure and permeability of shales in the LongmaxiFormation in southeastern Sichuan Basin: Journal of China Coal Society, 38(5), 772−777. Doi: 0253-9993(2013)05-0772-06.
[25] Friberg, P. A., Besana-Ostman, G. M., and Dricker, L., 2014, Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio: Seismol. Res. Lett., 85(6), 1295−1307. Doi: 10.1785/0220140127.
[26] Wang, Q., Wang, P., Xiang, D. G., and Feng, Y. S., 2012, Anisotropic property of mechanical parameters of shales: Natural Gas Industry, 32(12), 62−65. Doi:10.3787/j.issn.1000-0976.2012.12.013.
[27] Galis, M., Ampuero, J. P., Mai, P. M., and Cappa, F., 2017, Induced seismicity provides insight into why earthquake ruptures stop: Science Advances, 3(12), eaap7528. Doi:10.1126/sciadv.aap7528.
[28] Holland, A. A., 2013, Earthquakes triggered by hydraulic fracturing in south-central Oklahoma: Bulletin of the Seismological Society of America, 103(3), 1784-1792. Doi: 10.1785/0120120109.
[29] Itasca Consulting Group Inc., 2015, FLAC3D-fast Lagrangian analysis of continua in 3 dimensions: User’s Manual, Minneapolis: Itasca.
[30] Irwin, G. R., 1947, Fracture dynamics: Fracturing of Metals Seminar, American Society for Metals, 147−166.
[31] Jaeger, J. C., and Cook, N. G. W., 2007, Fundamentals of Rock Mechanics (4th Edition): Chapman and Hall, London.
[32] Kanamori, H., and Anderson, D. L., 1975, Theoretical basis of some empirical relations in seismology: Bull. Seismol.Soc.Am, 65(5), 1073-1095.
[33] Kanamori, H., and Brodsky, E. E., 2004, The physics of earthquakes: Physics Today, 54(6), 1429−1496. Doi:10.1088/0034-4885/67/8/R03.
[34] Wang, Y. M., Dong, D. Z., Li, J. Z., Wang, S. J., Li, X. J., Wang, L., Cheng, K. M., and Huang, J. L., 2012, Reservior characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan: Acta Petrolei Sinica, 33(4), 551−561. Doi: 0253-2697(2012)04-0551-11.
[35] Wei, X. C., Li, Q., Li, X. Y., and Niu, Z. Y., 2016, Modeling the hydromechanical responses of sandwich structurefaults during underground fluid injection: Environment Earth Science (2016), 75, 1155. Doi:10. 1007/s12665-016-5975-9.
[36] Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H., 2017, Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China: Scientific reports, 7, 7971. Doi:10.1038/s41598-017-08557-y.
[37] Zoback, M. L., 1992, Stress field constrains on intraplate seismicity in Eastern North America: Journal of Geophysics Research, 97(B8), 11761−11782.
[38] Li, K., Zhang, H., Ran, C., and Shao, M. J., 2016, Productivity Model of Shale Gas Well with Consideration of Stress Sensitivity: Taking Longmaxi Formation Shale Gas Reservoir in Southeastern Sichuan Basin as an Example: Journal of Xi'an Shiyou University (Natural Science Edition), 31(3), 57−61. Doi: 10.3969/ j.issn.1673-064X.2016.03.009
[39] Li, Q. H., Chen, M., Jin, Y., Hou, B., and Zhang, J. Z., 2012, Rock mechanical properties and brittleness evaluation of shale gas reservoir:. Petroleum Drilling Techniques, 40(4), 18−22. Doi:10.3969/ j.issn.1001-0890.2012.04.004.
[40] Li, Z. L., Zhang, H. C., Ren, Q. W., and Wang, Y. H., 2005, Analysis of hydraulic fracturing and calculation of critical internal water pressure of rock fracture: Rock and Soil Mechanics, 26(8), 1216−1220.
[41] Liu, S. G., Ma, W. X., Luba, J., Huang, W. M., Zeng, X. L., and Zhang, C. J., 2011, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China: Acta Petrologica Sinica, 27(8), 2239−2252. Doi: 1000-0569/2011/027(08)-2239-52.
[42] Lund Snee, J. -E., and Zoback, M. D., 2016, State of stress in Texas: Implications for induced seismicity: Geophysical Research Letters, 43, 10208−10214. Doi:10.1002/2016GL070974.
[43] McGarr, A., 1991, On a possible connection between three major earthquakes in California and oil production. BSSA, 81(3), 948−970.
[44] McGarr, A., 2014, Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth. 119(2), 1008-1019. Doi:10.1002/2013JB010597.
[45] Plenefisch, T., and Bonjer, K. P., 1997, The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters: Tectonophysics, 275, 71−97.
[46] Schultz, R., Stern, V., Novakovic, M., Atkinson, G., and Gu, Y. J., 2015, Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks: Geophys. Res. Lett. 42, 2750−2758. Doi:10.1002/2015GL063455.
[47] Skoumal, R., Brudzinski, M. R., and Currie, B. S., 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio: Bull. Seismol. Soc. Am. 105(1), 189-197. Doi:10.1785/0120140168.
[48] Song, C. P., Lu, Y. Y., Jia, Y. Z., and Xia, B. W., 2014, Effect of Coal-Rock interface on hydraulic fracturing propagation: Journal of Northeastern University (Natural Science), 35(9), 1340-1345.
[49] Wang, J. L., Liu, G. J., Wang, W. Z., Zhang, S. J., and Yuan, L. L., 2013, Characteristics of pore-fissure and permeability of shales in the LongmaxiFormation in southeastern Sichuan Basin: Journal of China Coal Society, 38(5), 772−777. Doi: 0253-9993(2013)05-0772-06.
[50] Wang, Q., Wang, P., Xiang, D. G., and Feng, Y. S., 2012, Anisotropic property of mechanical parameters of shales: Natural Gas Industry, 32(12), 62−65. Doi:10.3787/j.issn.1000-0976.2012.12.013.
[51] Wang, Y. M., Dong, D. Z., Li, J. Z., Wang, S. J., Li, X. J., Wang, L., Cheng, K. M., and Huang, J. L., 2012, Reservior characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan: Acta Petrolei Sinica, 33(4), 551−561. Doi: 0253-2697(2012)04-0551-11.
[52] Wei, X. C., Li, Q., Li, X. Y., and Niu, Z. Y., 2016, Modeling the hydromechanical responses of sandwich structurefaults during underground fluid injection: Environment Earth Science (2016), 75, 1155. Doi:10. 1007/s12665-016-5975-9.
[53] Zoback, M. L., 1992, Stress field constrains on intraplate seismicity in Eastern North America: Journal of Geophysics Research, 97(B8), 11761−11782.
[1] Han Chao, Yu Jiashun, Liu Wei-Zu, Yuan Jian-Long, Fu Xiao-Bo, and Hou Xiao-Ping. Numerical simulation of ground motion amplifi cation in Modong area, Lushan*[J]. APPLIED GEOPHYSICS, 2019, 16(3): 278-292.
[2] Li Qin, Ma Sui-Bo, Zhao Bin, and Zhang Wei. An improved rotated staggered grid finite difference scheme in coal seam*[J]. APPLIED GEOPHYSICS, 2018, 15(3-4(2)): 582-590.
[3] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[4] Hu Song, Li Jun, Guo Hong-Bo, Wang Chang-Xue. Analysis and application of the response characteristics of DLL and LWD resistivity in horizontal well[J]. APPLIED GEOPHYSICS, 2017, 14(3): 351-362.
[5] Fu Bo-Ye, Fu Li-Yun, Wei Wei, Zhang Yan. Boundary-reflected waves and ultrasonic coda waves in rock physics experiments[J]. APPLIED GEOPHYSICS, 2016, 13(4): 667-682.
[6] Tao Bei, Chen De-Hua, He Xiao, Wang Xiu-Ming. Rough interfaces and ultrasonic imaging logging behind casing[J]. APPLIED GEOPHYSICS, 2016, 13(4): 683-688.
[7] Yang Si-Tong, Wei Jiu-Chuan, Cheng Jiu-Long, Shi Long-Qing, Wen Zhi-Jie. Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models[J]. APPLIED GEOPHYSICS, 2016, 13(4): 621-630.
[8] Chang Jiang-Hao, Yu Jing-Cun, Liu Zhi-Xin. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. APPLIED GEOPHYSICS, 2016, 13(3): 539-552.
[9] Zhang Qian-Jiang, Dai Shi-Kun, Chen Long-Wei, Qiang Jian-Ke, Li Kun, Zhao Dong-Dong. Finite element numerical simulation of 2.5D direct current method based on mesh refinement and recoarsement[J]. APPLIED GEOPHYSICS, 2016, 13(2): 257-266.
[10] Liu Yang, Li Xiang-Yang, Chen Shuang-Quan. Application of the double absorbing boundary condition in seismic modeling[J]. APPLIED GEOPHYSICS, 2015, 12(1): 111-119.
[11] Cho , Kwang-Hyun . Discriminating between explosions and earthquakes[J]. APPLIED GEOPHYSICS, 2014, 11(4): 429-436.
[12] YIN Cheng-Fang, KE Shi-Zhen, XU Wei, JIANG Ming, ZHANG Lei-Jie, TAO Jie. 3D laterolog array sonde design and response simulation[J]. APPLIED GEOPHYSICS, 2014, 11(2): 223-234.
[13] HE Yi-Yuan, ZHANG Bao-Ping, DUAN Yu-Ting, XUE Cheng-Jin, YAN Xin, HE Chuan, HU Tian-Yue. Numerical simulation of surface and downhole deformation induced by hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2014, 11(1): 63-72.
[14] ZHAO Jian-Guo, SHI Rui-Qi. Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations[J]. APPLIED GEOPHYSICS, 2013, 10(3): 323-336.
[15] LIU Yun, WANG Xu-Ben, WANG Bin. Numerical modeling of the 2D time-domain transient electromagnetic secondary field of the line source of the current excitation[J]. APPLIED GEOPHYSICS, 2013, 10(2): 134-144.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn