APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (4): 517-522    DOI: 10.1007/s11770-017-0652-7
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Variable-grid reverse-time migration of different  seismic survey data
Sun Xiao-Dong1,2, Li Zhen-Chun1, and Jia Yan-Rui1
1. China University of Petroleum (East China), Qingdao 266580, China.
2. Laboratory for Marine Mineral Resource, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
 Download: PDF (625 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract With an increasing demand for high-resolution imaging of complex subsurface structures, thin layers and hidden reservoirs, borehole and cross-well seismic migration methods have become important. However, large differences are observed in the frequency bandwidth between the surface, borehole, and cross-well surveys. Thus, variable-grid-based algorithms have been adapted to reverse-time migration. Further, we introduce Lanczos filtering to ensure the stability of wavefield calculations as well as to decrease the artificial reflections that are caused due to the variable grid size. Finally, we observe that the application of this method to surface survey, borehole, and cross-well seismic data suggests improvements in the delineation of minor fractures and steeply dipping faults.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsCross-well seismic   variable-grid   Lanczos filter   reverse time migration     
Received: 2017-09-28;
Fund:

The research is supported by the  National Natural Science Foundation of China (No. 41574098), National Key Research and Development Program (No. 2016YFC06011050), and National Oil and Gas Major Project (No. 2016ZX05006-002).

Cite this article:   
. Variable-grid reverse-time migration of different  seismic survey data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 517-522.
 
[1] Duchon, C. E., 1979, Lanczos ?ltering in one and two dimensions: Appl. Meteorol., 18(2), 1016-1022.
[2] Du, Q. Z., Guo, C. F., Zhao, Q., Gong, X. F., Wang, C. X., and Li, X. Y., 2017, Vector-based elastic reverse time migration based on scalar imaging condition: GEOPHYSICS, 82(2), 111−127.
[3] Fan, J. W., Li, Z. C., Zhang, K., Zhang, M., and Liu, X. T., 2016, Multisource least-squares reverse-time migration with structure-oriented filtering: Applied Geophysics, 13(3), 491−499.
[4] Gerard, T. S., 1993, Least-squares cross-well migration: 63rd SEG Technical Program Expanded Abstracts, 110−113.
[5] He, R., Long, J. C., Liu, B., Wang, Y. C., Deng, S. G., and Zhang, F. Q., 2017, High-order generalized screen propagator migration based on particle swarm optimization: Applied Geophysics, 14(1), 64−72.
[6] He, Y. Y., Hu, T. Y., He, C., and Tan, Y. Y., 2016, P-wave attenuation anisotropy in TI media and its application in fracture parameters inversion: Applied Geophysics, 13(4), 649−656.
[7] Li, G. H., Feng, J. G., and Zhu, G. M., 2011, Quasi-P wave forward modeling in viscoelastic VTI media in frequency-space domain: Chinese Journal of Geophysic, 54(1), 200−207.
[8] Liu, H. W., Ding, R. W., Liu, L., and Liu, H., 2013, Wavefield reconstruction methods for reverse time migration: Journal of Geophysics and Engineering, 10(1), 1−6.
[9] Liu, L., Ding, R. W., Liu, H. W., and Liu, H., 2015, 3D hybrid-domain full waveform inversion on GPU: Computers & Geosciences, 83, 27−36.
[10] Qu, Y. M., Li, Z. C., Huang, J. P., and Li, J. L., 2016, Prismatic and full-waveform joint inversion: Applied Geophysics, 13(3), 511−518.
[11] Ren, H. R., Wang, H. Z., and Huang, G. H., 2012, Theoretical analysis and comparison of seismic wave inversion and imaging methods: Lithologic Reservoirs, 24(5), 12−18.
[12] Sun, X. D., Ge, Z. H., Li, Z. C., and Hong, Y., 2016, The stability problem of reverse time migration for viscoacoustic VTI media: Applied Geophysics, 13(4), 608−613.
[13] Tessmer, E., 2000, Seismic finite-difference modeling with spatially varying time steps: Geophysics, 65(4), 1290−1293.
[14] Wang, Y. B., Zheng, Y. K., Xue, F., Chang, X., Tong W. F., and Luo, Y., 2017, Reverse time migration of multiples: Reducing migration artifacts using the wavefield decomposition imaging condition: Geophysics, 82(4), 307−314.
[15] Yang, J. J., Luan, X. W., Fang, G., Liu, X. X., Pan, J., and Wang, X. J., 2016, Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation: Applied Geophysics, 13(3), 500−510.
[16] Yang, S. T., Wei, J. C., Cheng, J. L., Shi, L. Q., and Wen, Z. J., 2016, Numerical simulations of full-wave fields and analysis of channel wave characteristics in 3-D coal mine roadway models: Applied Geophysics, 13(4), 621−630.
[17] Zhang J. H., Wang W. M., and Zhao, L. F., 2007, Modeling 3-D scalar waves using the Fourier finite-difference method: Chinese J. Geophys. (in Chinese), 50(6), 1854−1862.
[18] Zhang, J. H., and Yao, Z. X., 2017, Exact local refinement using Fourier interpolation for nonuniform-grid modeling: Earth and Planetary Physics, 1, 58−62.
[1] Liu Guo-Feng, Meng Xiao-Hong, Yu Zhen-Jiang, and Liu Ding-Jin. An efficient scheme for multi-GPU TTI reverse time migration*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 61-69.
[2] Xue Hao and Liu Yang. Reverse-time migration using multidirectional wavefield decomposition method[J]. APPLIED GEOPHYSICS, 2018, 15(2): 222-233.
[3] Sun Xiao-Dong, Jia Yan-Rui, Zhang Min, Li Qing-Yang, and Li Zhen-Chun. Least squares reverse-time migration in the pseudodepth domain and reservoir exploration[J]. APPLIED GEOPHYSICS, 2018, 15(2): 234-239.
[4] Yang Jia-Jia, Luan Xi-Wu, He Bing-Shou, Fang Gang, Pan Jun, Ran Wei-Min, Jiang Tao. Extraction of amplitude-preserving angle gathers based on vector wavefield reverse-time migration[J]. APPLIED GEOPHYSICS, 2017, 14(4): 492-504.
[5] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun. Conjugate gradient and cross-correlation based least-square reverse time migration and its application[J]. APPLIED GEOPHYSICS, 2017, 14(3): 381-386.
[6] Sun Xiao-Dong, Ge Zhong-Hui, Li Zhen-Chun, Hong Ying. The stability problem of reverse time migration for viscoacoustic VTI media[J]. APPLIED GEOPHYSICS, 2016, 13(4): 608-613.
[7] Yang Jia-Jia, Luan Xi-Wu, Fang Gang, Liu Xin-Xin, Pan Jun, Wang Xiao-Jie. Elastic reverse-time migration based on amplitude-preserving P- and S-wave separation[J]. APPLIED GEOPHYSICS, 2016, 13(3): 500-510.
[8] Zhang Gong, Li Ning, Guo Hong-Wei, Wu Hong-Liang, Luo Chao. Fracture identification based on remote detection acoustic reflection logging[J]. APPLIED GEOPHYSICS, 2015, 12(4): 473-481.
[9] Cai Xiao-Hui, Liu Yang, Ren Zhi-Ming, Wang Jian-Min, Chen Zhi-De, Chen Ke-Yang, Wang Cheng. Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme[J]. APPLIED GEOPHYSICS, 2015, 12(3): 409-420.
[10] DU Qi-Zhen, ZHANG Ming-Qiang, CHEN Xiao-Ran, GONG Xu-Fei, GUO Cheng-Feng. True-amplitude wavefield separation using staggered-grid interpolation in the wavenumber domain[J]. APPLIED GEOPHYSICS, 2014, 11(4): 437-446.
[11] ZHAO Yan, LIU Yang, REN Zhi-Ming. Viscoacoustic prestack reverse time migration based on the optimal time–space domain high-order finite-difference method[J]. APPLIED GEOPHYSICS, 2014, 11(1): 50-62.
[12] SUN Wen-Bo, SUN Zan-Dong, ZHU Xing-Hui. Amplitude preserved VSP reverse time migration for angle-domain CIGs extraction[J]. APPLIED GEOPHYSICS, 2011, 8(2): 141-149.
[13] ZHANG Min, LI Zhen-Chun, ZHANG Hua, SUN Xiao-Dong. Poststack reverse-time migration using a non-reflecting recursive algorithm on surface relief[J]. APPLIED GEOPHYSICS, 2010, 7(3): 239-248.
[14] GONG Xiang-Bo, HAN Li-Guo, NIU Jian-Jun, ZHANG Xiao-Pei, WANG De-Li, DU Li-Zhi. Combined migration velocity model-building and its application in tunnel seismic prediction[J]. APPLIED GEOPHYSICS, 2010, 7(3): 265-271.
[15] DU Qi-Zhen, SUN Rui-Yan, QIN Tong, ZHU Yi-Tong, BI Li-Fei. A study of perfectly matched layers for joint multi-component reverse-time migration[J]. APPLIED GEOPHYSICS, 2010, 7(2): 166-173.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn