APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2017, Vol. 14 Issue (2): 279-290    DOI: 10.1007/s11770-017-0615-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
2D joint inversion of CSAMT and magnetic data based on cross-gradient theory
Wang Kun-Peng1, Tan Han-Dong1,2, and Wang Tao3
1. School of Geophysics and information Technology, China University of Geosciences(Beijing), Beijing 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences), Ministry of Education, Beijing 100083, China.
3. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China.
 Download: PDF (816 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract A two-dimensional forward and backward algorithm for the controlled-source audio-frequency magnetotelluric (CSAMT) method is developed to invert data in the entire region (near, transition, and far) and deal with the effects of artificial sources. First, a regularization factor is introduced in the 2D magnetic inversion, and the magnetic susceptibility is updated in logarithmic form so that the inversion magnetic susceptibility is always positive. Second, the joint inversion of the CSAMT and magnetic methods is completed with the introduction of the cross gradient. By searching for the weight of the cross-gradient term in the objective function, the mutual influence between two different physical properties at different locations are avoided. Model tests show that the joint inversion based on cross-gradient theory offers better results than the single-method inversion. The 2D forward and inverse algorithm for CSAMT with source can effectively deal with artificial sources and ensures the reliability of the final joint inversion algorithm.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Key wordsCSAMT   magnetic method   data space inversion   cross-gradient   joint inversion     
Received: 2016-12-14;
Fund:

This work is jointly sponsored by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (No. 41374078).

Cite this article:   
. 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory[J]. APPLIED GEOPHYSICS, 2017, 14(2): 279-290.
 
[1] Colombo, D., and Stefano, M. D., 2007, Geophysical modeling via simultaneous joint inversion of seismic, gravity, and electromagnetic data: Application to prestack depth imaging: The Leading Edge, 26(3), 326−331.
[2] Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 52(3), 289−300.
[3] DeGroot-Hedlin, C., and Constable, S., 1990, Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data: Geophysics, 55(12), 1613−1624.
[4] Fregoso E. and Gallardo L. A., 2009, Cross-gradients joint 3D inversion with applications to gravity and magnetic data: Geophysics, 74(4), L31−L42.
[5] Gallardo, L. A., and Meju, M. A., 2003, Characterization of heterogeneous near-surface materials by joint 2D inversion of DC resistivity and seismic data: Geophysical Research Letters, 30(13), 1658−1661.
[6] Guan, Z. N., 2005, Geomagnetic Field and Magnetic Exploration: Geological Publishing House, Beijing, 107−110.
[7] Jegen, M. D., Hobbs, R. W., Tarits, P., et al, 2009, Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: Preliminary results of sub-basalt imaging off the Faroe Shelf: Earth and Planetary Science Letters, 282(1), 47−55.
[8] Key, K., 2016, MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data: Geophysical Journal International, 207(1), ggw290.
[9] Li, Y. G., and Oldenburg, D. W., 1996, 3-D inversion of magnetic data: Geophysics, 61(2), 394−408.
[10] Li, Y. G., and Oldenburg, D. W., 2003, Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method: Geophys. J. Int., 152, 251−265.
[11] Lin, C. H., Tan, H. D., Shu Q., et al., 2012, Three-dimensional conjugate gradient inversion of CSAMT data: Chinese J. Geophys. (in Chinese), 55(11), 3829−3838.
[12] McGillivray, P. R., Oldenburg, D. W., Ellis, R. G., et al., 1994, Calculation of sensitivities for the frequency-domain electromagnetic problem: Geophys. J. Int., 116, 1−4.
[13] Mitsuhata, Y., Uchida, T., and Amano, H., 2002, 2.5-D inversion of frequency-domain electromagnetic data generated by a grounded-wire source: Geophysics, 67(6), 1753−1768.
[14] Peng, M., 2012, Joint Inversion of Magnetotelluric and Teleseismic data: PhD Thesis, China University of Geosciences, Beijing.
[15] Rodi, W., and Mackie, R. L., 2001, Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion: Geophysics, 66(1), 174−187.
[16] Sasaki, Y, 1989, Two-dimensional joint inversion of magnetotelluric and dipole-dipole resistivity data: Geophysics, 54(2), 254−262
[17] Siripunvaraporn, W., and Egbert, G., 2000, An efficient data-subspace inversion method for 2-D magnetotelluric data: Geophysics, 65(3), 791−803.
[18] Vozoff, K., and Jupp, D. L. B., 1977, Effective search for a buried layer: An approach to experimental design in geophysics: Exploration Geophysics, 8(1), 6−15.
[19] Yang, B., 2012, Three Dimensional Marine Controlled Source Electromagnetic Data Forward Modeling and Inversion with Topography: PhD Thesis, China University of Geosciences.
[20] Zhang, B., 2012, Research of 2D CSAMT Forward and Inversion: MSc. Thesis, China University of Geosciences, Beijing.
[21] Zhou, L. F., 2012, Two Dimensional Joint Inversion of MT and Seismic data: MSc. Thesis, China University of Geosciences, Beijing.
[1] Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
[2] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[3] Yang Hai-Yan, Li Feng-Ping, Chen Shen-En, Yue Jian-Hua, Guo Fu-Sheng, Chen Xiao, and Zhang Hua. An inversion of transient electromagnetic data from a conical source[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 545-555.
[4] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[5] Zhou Feng, Tang Jing-Tian, Ren Zheng-Yong, Zhang Zhi-Yong, Chen Huang, Huang Xiang-Yu, and Zhong Yi-Yuan. A hybrid finite-element and integral-equation method for forward modeling of 3D controlled-source electromagnetic induction[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 536-544.
[6] Mo Dan, Jiang Qi-Yun, Li Di-Quan, Chen Chao-Jian, Zhang Bi-Ming, Liu Jia-Wen. Controlled-source electromagnetic data processing based on gray system theory and robust estimation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 570-580.
[7] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[8] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[9] Yang Xue-Li, Li Bo, Peng Chuan-Sheng, Yang Yang. Application of a wide-field electromagnetic method to shale gas exploration in South China[J]. APPLIED GEOPHYSICS, 2017, 14(3): 441-448.
[10] Di Qing-Yun, Fu Chang-Min, An Zhi-Guo, Xu Cheng, Wang Ya-Lu, Wang Zhong-Xing. Field testing of the surface electromagnetic prospecting system[J]. APPLIED GEOPHYSICS, 2017, 14(3): 449-458.
[11] Wang Jun-Lu, Lin Pin-Rong, Wang Meng, Li Dang, Li Jian-Hua. Three-dimensional tomography using high-power induced polarization with the similar central gradient array[J]. APPLIED GEOPHYSICS, 2017, 14(2): 291-300.
[12] Yang Hai-Yan, Li Feng-Ping, Yue Jian-Hua, Guo Fu-Sheng, Liu Xu-Hua, Zhang Hua. Cone-shaped source characteristics and inductance effect of transient electromagnetic method[J]. APPLIED GEOPHYSICS, 2017, 14(1): 165-174.
[13] Meng Qing-Xin, Hu Xiang-Yun, Pan He-Ping, Zhou Feng. 10.1007/s11770-017-0600-6[J]. APPLIED GEOPHYSICS, 2017, 14(1): 175-186.
[14] Chang Jiang-Hao, Yu Jing-Cun, Liu Zhi-Xin. Three-dimensional numerical modeling of full-space transient electromagnetic responses of water in goaf[J]. APPLIED GEOPHYSICS, 2016, 13(3): 539-552.
[15] Fang Yuan, Zhang Feng-Qi, Wang Yan-Chun. Generalized linear joint PP–PS inversion based on two constraints[J]. APPLIED GEOPHYSICS, 2016, 13(1): 103-115.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn