APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2016, Vol. 13 Issue (1): 166-178    DOI: 10.1007/s11770-016-0532-6
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs
Li Sheng-Jie1,2, Shao Yu3, and Chen Xu-Qiang1,2
1. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China.
2. CNPC Key Lab of China University of Petroleum (Beijing), Beijing 102249, China.
3. Research Institute of Exploration and Development, Xinjiang Oilfield, PetroChina, Karamay, Xinjiang 83400, China.
 Download: PDF (813 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Li Sheng-Jie
Shao Yu
Chen Xu-Qiang
Key wordsAnisotropy   rock physics   pore structure   modulus   carbonates     
Received: 2016-01-01;
Fund:

This work was supported by the National Natural Science Foundation of China (No. 41274136).

Cite this article:   
Li Sheng-Jie,Shao Yu,Chen Xu-Qiang. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs[J]. APPLIED GEOPHYSICS, 2016, 13(1): 166-178.
 
[1] Agersborg, R. T., Hohansen, A., and Jakobsen, M., 2005, The T-matrix approach for carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1597-1600.
[2] Anselmetti, F., and Ebrili, G. P., 1999, The velocity-deviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density log: AAPG Bulletin, 83(3), 450-466.
[3] Asseffa, S., McCann, C., and Sothcott, J., 2003, Velocity of compressional and shear waves in limestones: Geophysical Prospecting, 51(1), 1-13.
[4] Brown, R., and Korringa, I., 1975, On the dependence of elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608-616.
[5] Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: J. Mech. Phys. Solid, 13(4), 223-227.
[6] Carcione, J. M., and Avseth, P., 2015, Rock-physics templates for clay-rich source rocks: Geophysics, 80(5), D480-500.
[7] Castagna, J., Batzle, M., and Eastwood, R., 1985, Relationships between compressional-wave and shear-wave velocity in clastic silicate rocks: Geophysics, 50(4), 571-581.
[8] Choquette, P. W., and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: AAPG Bulletin, 54(2), 207-244.
[9] Christensen, R. M., 2005, Mechanics of composite materials: Wiley, New York, 31-71.
[10] Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture: AAPG Bulletin, 46(1), 108-121.
[11] Eberli, G. P., Baechle, G., Anselmetti, F., Incze, M., Dong, W., Tura, A., and Saparkman, G., 2003, Factors controlling elastic properties in carbonate sediments and rocks: The Leading Edge, 22(7), 654-660.
[12] Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problem: Proc. Roy. Soc, A241(1226), 376-396.
[13] Hornby, B. E., Schwartz, M., and Hundson, A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570-1583.
[14] Huang, H., Stewart, R. R., Sil, S., and Dyaur, N., 2015, Fluid substitution effect on seismic anisotropy: J. Geophys. Res, 120(2), 850-863.
[15] Hudson, J. A., 1980, Overall properties of a cracked soild: Mathematical Proceedings of the Cambridge Philosophical Society, 88(2), 371-384.
[16] Keys R. G., and Xu, S., 2002, An approximation for the Xu-White velocity model. Geophysics, 67(5), 1406-1414.
[17] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full waveform sonic): The Log Analyst, 31(6), 355-369.
[18] Kumar M., and Han, De-hua, 2005, Pore shape effect on elastic properties of carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, RP1.3, 1477-1480.
[19] Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media:Part I: Theoretical formulations: Geophysics, 39(5), 587-606.
[20] Landro, M., 2015, Aspect ratio histograms of 3D ellipsoids and 2D ellipses—Analytical relations and numerical examples: Geophysics, 80(2), D429-D440.
[21] Li, J. Y., and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Appl. Geophys., 10(1), 1-13.
[22] Lucia, F. J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG Bulletin, 79(9), 1275-1300.
[23] Mavko, G., Mukerkji T., and Dvorkin, J., 2001, The rock physics handbook: Tools for seismic analysis inporous media: Cambridge University Press, New York, 169-224.
[24] Regnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., and Yven B., 2015, Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology, J. Geophys. Res, 120, 790-811.
[25] Walpole, L. J., 1969, On overall elastic moduli of composite materials: J. Mech. Phys. Sol., 17(4), 235-251
[26] Weger, R. J., Baechle, G. T., Masaferro, J. L., and Everli. G. P., 2004, Effect of porestructure on sonic velocity in carbonate: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1774-1777.
[27] Willis, J. R., 1977, Bounds and self-consistent estimates for the overall properties of anisotropic composites: J. Mech. Phys. Solids, 25(3), 185-202.
[28] Xu S., and Payne, M. A., 2009, Modeling elastic Properties in carbonate rocks: The Leading Edge, 28(1), 66-74.
[29] Xu, S., and White, R. E., 1995, A new velocity model for shear-wave velocity prediction: Geophysical Prospecting, 43(1), 91-118.
[30] Yu, H., Ba, J., Carcione, J., Li, J. S., Tang, G., Zhang, X. Y., He, Z. H., and Ouyang, H., 2014, Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection: Appl. Geophys., 11(1), 9-22.
[1] Ma Ru-Peng, Ba Jing, Carcione José Maria, Zhou Xin, and Li Fan. Dispersion and attenuation of compressional waves in tight oil reservoirs: Experiments and simulations*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 36-49.
[2] Liu Yun-Long, Zhang Yuan-Zhong, Wang Yong-Jun, and Wang Li-Geng. The pore structure of tight limestone—Jurassic Ziliujing Formation, Central Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2018, 15(2): 165-174.
[3] . Seismic prediction method of multiscale fractured reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(2): 240-252.
[4] Guo Gui-Hong, Yan Jian-Ping, Zhang Zhi, José Badal, Cheng Jian-Wu, Shi Shuang-Hu, and Ma Ya-Wei. Numerical analysis of seismic wave propagation in fluid-saturated porous multifractured media[J]. APPLIED GEOPHYSICS, 2018, 15(2): 311-317.
[5] Yan Li-Li, Cheng Bing-Jie, Xu Tian-Ji, Jiang Ying-Ying, Ma Zhao-Jun, Tang Jian-Ming. Study and application of PS-wave pre-stack migration in HTI media and an anisotropic correction method[J]. APPLIED GEOPHYSICS, 2018, 15(1): 57-68.
[6] Wang Tao, Wang Kun-Peng, Tan Han-Dong. Forward modeling and inversion of tensor CSAMT in 3D anisotropic media[J]. APPLIED GEOPHYSICS, 2017, 14(4): 590-605.
[7] Qian Ke-Ran, He Zhi-Liang, Chen Ye-Quan, Liu Xi-Wu, Li Xiang-Yang. Prediction of brittleness based on anisotropic rock physics model for kerogen-rich shale[J]. APPLIED GEOPHYSICS, 2017, 14(4): 463-480.
[8] Yang Zhi-Qiang, He Tao, Zou Chang-Chun. Shales in the Qiongzhusi and Wufeng–Longmaxi Formations: a rock-physics model and analysis of the effective pore aspect ratio[J]. APPLIED GEOPHYSICS, 2017, 14(3): 325-336.
[9] Huang Wei, Ben Fang, Yin Chang-Chun, Meng Qing-Min, Li Wen-Jie, Liao Gui-Xiang, Wu Shan, Xi Yong-Zai. Three-dimensional arbitrarily anisotropic modeling for time-domain airborne electromagnetic surveys[J]. APPLIED GEOPHYSICS, 2017, 14(3): 431-440.
[10] Huang Xin, Yin Chang-Chun, Cao Xiao-Yue, Liu Yun-He, Zhang Bo, Cai Jing. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method[J]. APPLIED GEOPHYSICS, 2017, 14(3): 419-430.
[11] Yan Jian-Ping, He Xu, Geng Bin, Hu Qin-Hong, Feng Chun-Zhen, Kou Xiao-Pan, Li Xing-Wen. Nuclear magnetic resonance T2 spectrum: multifractal characteristics and pore structure evaluation[J]. APPLIED GEOPHYSICS, 2017, 14(2): 205-215.
[12] Su Ben-Yu and Yue Jian-Hua. Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams[J]. APPLIED GEOPHYSICS, 2017, 14(2): 216-224.
[13] Fang Gang, Ba Jing, Liu Xin-Xin, Zhu Kun, Liu Guo-Chang. Seismic wavefield modeling based on time-domain symplectic  and Fourier finite-difference method[J]. APPLIED GEOPHYSICS, 2017, 14(2): 258-269.
[14] Song Lian-Teng, Liu Zhong-Hua, Zhou Can-Can, Yu Jun, Xiu Li-Jun, Sun Zhong-Chun, Zhang Hai-Tao. Analysis of elastic anisotropy of tight sandstone and the influential factors[J]. APPLIED GEOPHYSICS, 2017, 14(1): 10-20.
[15] Liu Xi-Wu, Guo Zhi-Qi, Liu Cai, Liu Yu-Wei. Anisotropy rock physics model for the Longmaxi shale gas reservoir, Sichuan Basin, China[J]. APPLIED GEOPHYSICS, 2017, 14(1): 21-30.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn