APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (4): 523-532    DOI: 10.1007/s11770-015-0523-z
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Reservoir parameter inversion based on weighted statistics
Gui Jin-Yong1, Gao Jian-Hu1, Yong Xue-Shan1, Li Sheng-Jun1, Liu Bin-Yang1, and Zhao Wan-Jin1
1. Research Institute of Petroleum Exploration & Development-Northwest Branch, Petrochina, Lanzhou 730020, China.
 Download: PDF (1217 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Variation of reservoir physical properties can cause changes in its elastic parameters. However, this is not a simple linear relation. Furthermore, the lack of observations, data overlap, noise interference, and idealized models increases the uncertainties of the inversion result. Thus, we propose an inversion method that is different from traditional statistical rock physics modeling. First, we use deterministic and stochastic rock physics models considering the uncertainties of elastic parameters obtained by prestack seismic inversion and introduce weighting coefficients to establish a weighted statistical relation between reservoir and elastic parameters. Second, based on the weighted statistical relation, we use Markov chain Monte Carlo simulations to generate the random joint distribution space of reservoir and elastic parameters that serves as a sample solution space of an objective function. Finally, we propose a fast solution criterion to maximize the posterior probability density and obtain reservoir parameters. The method has high efficiency and application potential.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Gui Jin-Yong
Gao Jian-Hu
Yong Xue-Shan
Li Sheng-Jun
Liu Bing-Yang
Zhao Wan-Jin
Key wordsReservoir parameters   inversion   weighted statistics   Bayesian framework   stochastic simulation     
Received: 2015-06-08;
Fund:

This research work is supported by the National Science and Technology Major Project (No. 2011 ZX05007-006), the 973 Program of China (No. 2013CB228604), and the Major Project of Petrochina (No. 2014B-0610).

Cite this article:   
Gui Jin-Yong,Gao Jian-Hu,Yong Xue-Shan et al. Reservoir parameter inversion based on weighted statistics[J]. APPLIED GEOPHYSICS, 2015, 12(4): 523-532.
 
[1] Bachrach, R., 2006, Joint estimation of porosity and saturation using stochastic rock-physics modeling: Geophysics, 71(5), O53-O63.
[2] Blangy, J. P., 1992, Integrated seismic lithologic interpretation: The petrophysical basis: Ph.D. thesis, Stanford University.
[3] Doyen, P. M., 1988, Porosity from seismic data: A geostatistical approach: Geophysics, 53, 1263-1275.
[4] Fan, J. J., and Liu, P., 2008, Research on Naive Bayesian Classifier’s independence assumption: Computer Engineering and Applications (in Chinese), 44, 131-141.
[5] Fournier, F., 1989, Extraction of quantitative geologic information from seismic data with multidimensional statistical analysis: Part I, methodology, and Part II, a case study: 59th Annual International Meeting, SEG, Expanded Abstracts, 726-733.
[6] Friedman, N., Geiger, D., and Goldszmidt, M., 1997, Bayesian Network Classifiers: Machine Learning, 29, 131-163.
[7] Grana, D., and Rossa, E. D., 2010, Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion: Geophysics, 75(3), O21-O37.
[8] Hastie, T., Tibshirani, R., and Friedman, J., 2002, The elements of statistical learning: Springer.
[9] Marion, D., and Jizba, D., 1997, Acoustic properties of carbonate rocks: Use in quantitative interpretation of sonic and seismic measurements, in I. Palaz, and K. J. Marfurt, eds., Carbonate Seismology: Geophysical Developments, SEG, 75-93.
[10] Mavko, G., Mukerji, T., and Dvorkin, J., 2003, The rock physics handbook: Cambridge University Press, UK, 150-151.
[11] Kabir, N., Lavaud, B., and Chavent G., 2000, Estimation of the density contrast by AVO inversion beyond the linearized approximation: an indicator of gas saturation. 70th Annual International Meeting, SEG, Expanded Abstracts, 243-246.
[12] Russell, B. H., Gray, D., and Hampson, D. P., 2011, Linearized AVO and poroelasticity: Geophysics, 76(3), C19-C29.
[13] Spikes, K., Mukerji, T., Dvorkin, J., and Mavko, G., 2008, Probabilistic seismic inversion based on rock-physics models: Geophysics, 72(5), R87-R97.
[14] Tarantola, A., 2005, Inverse problem theory and methods for model parameter estimation: Society for Industrial and Applied Mathematics Press, USA, 20.
[15] Yin, X. Y., Sun, R. Y., Wang, B. L., and Zhang, G. Z., 2014, Simultaneous inversion of petrophysical parameters based on geostatistical a priori information: Applied Geophysics, 11(3), 311-320.
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
[3] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[4] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[5] Meng Zhao-Hai, Xu Xue-Chun, and Huang Da-Nian. Three-dimensional gravity inversion based on sparse recovery iteration using approximate zero norm[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 524-535.
[6] Yang Hai-Yan, Li Feng-Ping, Chen Shen-En, Yue Jian-Hua, Guo Fu-Sheng, Chen Xiao, and Zhang Hua. An inversion of transient electromagnetic data from a conical source[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 545-555.
[7] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[8] Liu Wei, Wang Yan-Chun, Li Jing-Ye, Liu Xue-Qing, and Xie Wei. Prestack AVA joint inversion of PP and PS waves using the vectorized reflectivity method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 448-465.
[9] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[10] Shi Cai-Wang and He Bing-Shou. Multiscale full-waveform inversion based on shot subsampling[J]. APPLIED GEOPHYSICS, 2018, 15(2): 261-270.
[11] Gao Zong-Hui, Yin Chang-Chun, Qi Yan-Fu, Zhang Bo, Ren Xiu-Yan, and Lu Yong-Chao. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[12] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[13] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[14] Chang De-Kuan, Yang Wu-Yang, Wang Yi-Hui, Yang Qing, Wei Xin-Jian, Feng Xiao-Ying. Random noise suppression for seismic data using a non-local Bayes algorithm[J]. APPLIED GEOPHYSICS, 2018, 15(1): 91-98.
[15] Sun Cheng-Yu, Wang Yan-Yan, Wu Dun-Shi, Qin Xiao-Jun. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. APPLIED GEOPHYSICS, 2017, 14(4): 551-558.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn