APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2015, Vol. 12 Issue (4): 598-604    DOI: 10.1007/s11770-015-0526-9
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Improving homomorphic wavelet estimation by compensating for residual NMO stretching on stack section
Mohammad Mahdi Abedi1 and Siyavash Torabi2
1. Department of Petroleum Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
2. Dana Energy Group Co., Tehran, Iran
 Download: PDF (307 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Wavelet estimation is a common step in seismic data processing and inversion. Homomorphic wavelet estimation has long utilized as a method that uses a seismic stack section with no phase presumption. Forming a stack section, normal move-out (NMO) correction must be applied on common midpoint (CMP) gathers, although it introduces NMO stretching. After stacking, residual of the NMO stretching may affect the stack section even after muting the highly stretched zone of the NMO corrected CMP gather. Presence of significant residual NMO stretching changes the spectral characteristics of data in time direction, by different degrees. Considering that in homomorphic process the wavelet is estimated based on the spectral characteristics of data, compensating for the residual NMO stretching, can improve the accuracy of the process. Here, we introduce a fast method of calculating the amount of residual NMO stretching and compensating for its effect on wavelet estimation. The proposed method needs limited prestack information like offsets and velocity function and include no prestack processing. We apply the proposed method on synthetic and real datasets and demonstrate the improvement of the estimated wavelet.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Mohammad Mahdi Abedi
Siyavash Torabi
Key wordsHomomorphic analysis   stretching   normal move-out   wavelet   stacking   inversion     
Received: 2015-01-12;
Cite this article:   
Mohammad Mahdi Abedi,Siyavash Torabi. Improving homomorphic wavelet estimation by compensating for residual NMO stretching on stack section[J]. APPLIED GEOPHYSICS, 2015, 12(4): 598-604.
 
[1] Dunkin, J. W., and Levin, F. K., 1973, Effect of normal moveout on a seismic pulse: Geophysics, 38, 635−642.
[2] Herrera, R. H., and van der Baan, M., 2012, Short-time homomorphic wavelet estimation: Journal of Geophysics and Engineering, 9, 674−680.
[3] Luo, C. M., Wang, S. X., and Yuan, S. Y., 2014, Effect of inaccurate wavelet phase on prestack waveform inversion: Applied Geophysics, 11(4), 479−488.
[4] Otis, R. M., and Smith, R. B., 1977, Homomorphic deconvolution by log spectral averaging: Geophysics, 42, 1146−57.
[5] Perroud, H., Tygel, M., 2004, Nonstretch NMO: Geophysics, 69, 599−607.
[6] Rupert, G. B., and Chun, J. H., 1975, The block move sum normal moveout correction: Geophysics, 40, 17−24.
[7] Tribolet, J. M., and Oppenheim, A. V., 1977, Deconvolution of seismic data using homomorphic filtering: Massachusetts Institute of Technology: Cambridge, Research Lab of Electronics.
[8] Ulrych, T., 1971, Application of homomorphic deconvolution to seismology: Geophysics, 36, 650-60.
[9] Vermeer, G. J. O., 2013, NMO stretch in survey design and processing: 83th Ann. Soc. Expl. Geophys. Mtg., Expanded Abstracts, 171−175.
[10] Yilmaz, O., 2001, Seismic data analysis-volume I: Society of Exploration Geophysicists, USA, 887−888.
[11] Yuan, S. Y., and Wang, S. X., 2011, Influence of inaccurate wavelet phase estimation on seismic inversion: Applied Geophysics, 8(1), 48−59.
[12] Zhang, B., Zhang, K., Guo, Sh., and Marfurt, K. J., 2013, Nonstretching NMO correction of prestack time-migrated gathers using a matching-pursuit algorithm: Geophysics, 78, U9−U18
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
[3] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[4] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[5] Li Hao, Li Guo-Fa, Guo Xiang-Hui, Sun Xi-Ping, and Wang Jian-Fu. Nonstationary inversion-based directional deconvolution of airgun array signature*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 124-132.
[6] Meng Zhao-Hai, Xu Xue-Chun, and Huang Da-Nian. Three-dimensional gravity inversion based on sparse recovery iteration using approximate zero norm[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 524-535.
[7] Yang Hai-Yan, Li Feng-Ping, Chen Shen-En, Yue Jian-Hua, Guo Fu-Sheng, Chen Xiao, and Zhang Hua. An inversion of transient electromagnetic data from a conical source[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 545-555.
[8] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[9] Liu Wei, Wang Yan-Chun, Li Jing-Ye, Liu Xue-Qing, and Xie Wei. Prestack AVA joint inversion of PP and PS waves using the vectorized reflectivity method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 448-465.
[10] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[11] Shi Cai-Wang and He Bing-Shou. Multiscale full-waveform inversion based on shot subsampling[J]. APPLIED GEOPHYSICS, 2018, 15(2): 261-270.
[12] Gao Zong-Hui, Yin Chang-Chun, Qi Yan-Fu, Zhang Bo, Ren Xiu-Yan, and Lu Yong-Chao. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[13] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[14] Wang Bing, Kuo Zhang, Guo Tao, He Liu, Zhang Xiao-Liang. Acoustic reflection well logging modeling using the frequency-domain finite-element method with a hybrid PML[J]. APPLIED GEOPHYSICS, 2018, 15(1): 35-45.
[15] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn