APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (3): 331-339    DOI: 10.1007/s11770-014-0442-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal
Guo Can-Can1, Xiong Sheng-Qing2, Xue Dian-Jun2, and Wang Lin-Fei2
1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China.
2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China.
 Download: PDF (899 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract We propose a new automatic method for the interpretation of potential field data, called the RDAS–Euler method, which is based on Euler’s deconvolution and analytic signal methods. The proposed method can estimate the horizontal and vertical extent of geophysical anomalies without prior information of the nature of the anomalies (structural index). It also avoids inversion errors because of the erroneous choice of the structural index N in the conventional Euler deconvolution method. The method was tested using model gravity anomalies. In all cases, the misfit between theoretical values and inversion results is less than 10%. Relative to the conventional Euler deconvolution method, the RDAS–Euler method produces inversion results that are more stable and accurate. Finally, we demonstrate the practicability of the method by applying it to Hulin Basin in Heilongjiang province, where the proposed method produced more accurate data regarding the distribution of faults.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
GUO Can-Can
XIONG Sheng-Qing
XUE Dian-Jun
WANG Lin-Fei
Key wordsEuler deconvolution   analytic signal   edge identification   structural index     
Received: 2014-03-04;
Fund:

This work is supported by the National High Technology Research and Development Program of China (No. 2006AA06A208).

Cite this article:   
GUO Can-Can,XIONG Sheng-Qing,XUE Dian-Jun et al. Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal[J]. APPLIED GEOPHYSICS, 2014, 11(3): 331-339.
 
[1] Blakely, R. J.,1995, Potential theory in gravity and magnetic applications: Cambridge University Press.
[2] Beiki, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location: Geophysics, 75(6), I59-I74.
[3] Bournas, N., and Baker, H. A., 2001, Interpretation of magnetic anomalies using the horizontal gradient analytic signal: Annali DiGeofisica, 44(3), 505-526.
[4] Bastani, M., and Pedersen, L. B., 2001, Automatic interpretation of magnetic dikes parameters using the analytics signal technique: Geophysics, 66, 551-561.
[5] Keating, P., and Sailhac, P., 2004, Use of the analytic signal to identify magnetic anomalies due to kimberlite pipes: Geophysics, 69(1), 180-190.
[6] Ma, G. Q., Du, X. J., Li, L. L., and Meng, L. S., 2012, Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal: Applied Geophysics, 9(4), 468-474.
[7] Mushayandebvu, M. F., Van, D. P., and Reid, A. B., 2001, Magnetic source parameters of two-dimensional structures using extended Euler deconvolution: Geophysics, 66(3),814-823.
[8] Nabighian, M. N., and Hansen, R. O., 2001,Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform: Geophysics, 66(6),1805-1810.
[9] Nabighian, M. N., 1984, Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms-Fundamental relations: Geophysics,49, 780-786.
[10] Nabighian, M. N., Grauch, V. J. S., Hansen, R. O., LaFehr, T. R., Li, Y., Peirce, J. W., Phillips, J. D., and Ruder, M. E., 2005, The historical development of the magnetic method in exploration: Geophysics, 70(6), 33-61.
[11] Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section:Its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507-517.
[12] Pierre, B. K., 1998, Weighted Euler deconvolution of gravity data: Geophysics, 63(5), 1959-1603.
[13] Reid, A. B., Allsop, J. M., and Granser, H., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1),80-91.
[14] Roest, W. R., Verhoef, J., and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57,116-125.
[15] Salem, A., and Ravat, D, A., 2003, A combined analytic signal and Euler method (AN-EUL) for automatic interpretation of magnetic data: Geophysics, 68, 1952-1961.
[16] Salem, A., Williams, S., and Fairheard, D., 2008, Interpretation of magnetic data using tilt-angle derivatives: Geophysics, 71(1), 1-10.
[17] Thurston, J. B., and Smith, R. S., 1997, Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPI(TM) method: Geophysics, 62, 807-813.
[18] Thompson, D. T., 1982, EULDPH—a new technique for making computer assisted depth estimates from magnetic data: Geophysics, 47(1), 31-37.
[19] Wang, Y. G., Wang, Z. W., Zhang, F. X., Zhang, J., Tai, Z. H., and Guo, C. C., 2012, Edge detection of potential field based on normalized vertical gradient of mean square error ratio: Journal of China University of Petroleum, 36(2), 86-90.
[20] Zhang, F. X., Zhang, X. Z., Zhang, F. Q., Sun, J. P., Qiu, D. M., and Xue, J., 2010, Study on geology and geophysics on structural units of Hulin Basin in Heilongjiang province: Journal of Jilin University (Earth Science Edition), 40(5), 1170-1176.
[1] Ma Guo-Qing, Ming Yan-Bo, Han Jiang-Tao, Li Li-Li, and Meng Qing-Fa. Fast local wavenumber (FLW) method for the inversion of magnetic source parameters[J]. APPLIED GEOPHYSICS, 2018, 15(2): 353-360.
[2] LI Li-Li, HAN Li-Guo, HUANG Da-Nian. Normalized edge detection, and the horizontal extent and depth of geophysical anomalies[J]. APPLIED GEOPHYSICS, 2014, 11(2): 149-157.
[3] MA Guo-Qing, DU Xiao-Juan, LI Li-Li, MENG Ling-Shun. Interpretation of magnetic anomalies by horizontal and vertical derivatives of the analytic signal[J]. APPLIED GEOPHYSICS, 2012, 9(4): 468-474.
[4] SUN Lu-Ping, ZHENG Xiao-Dong, LI Jin-Song, SHOU Hao, LI Yan-Dong. Quantitative prediction and application of channel sand bodies based on seismic peak attributes in the frequency domain[J]. APPLIED GEOPHYSICS, 2010, 6(1): 10-17.
[5] SUN Lu-Ping, ZHENG Xiao-Dong, LI Jin-Song, SHOU Hao, LI Yan-Dong. Quantitative prediction and application of channel sand bodies based on seismic peak attributes in the frequency domain[J]. APPLIED GEOPHYSICS, 2010, 7(1): 10-17.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn