APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2014, Vol. 11 Issue (3): 277-288    DOI: 10.1007/s11770-014-0443-3
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain
Gou Fu-Yan1, Liu Cai1, Liu Yang1, Feng Xuan1, and Cui Fang-Zi2
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Center for Hydrogeology and Environmental Geology Survey, CGS, Baoding 071051, China.
 Download: PDF (1984 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In seismic prospecting, field conditions and other factors hamper the recording of the complete seismic wavefield; thus, data interpolation is critical in seismic data processing. Especially, in complex conditions, prestack missing data affect the subsequent high-precision data processing workflow. Compressive sensing is an effective strategy for seismic data interpolation by optimally representing the complex seismic wavefield and using fast and accurate iterative algorithms. The seislet transform is a sparse multiscale transform well suited for representing the seismic wavefield, as it can effectively compress seismic events. Furthermore, the Bregman iterative algorithm is an efficient algorithm for sparse representation in compressive sensing. Seismic data interpolation methods can be developed by combining seismic dynamic prediction, image transform, and compressive sensing. In this study, we link seismic data interpolation and constrained optimization. We selected the OC-seislet sparse transform to represent complex wavefields and used the Bregman iteration method to solve the hybrid norm inverse problem under the compressed sensing framework. In addition, we used an H-curve method to choose the threshold parameter in the Bregman iteration method. Thus, we achieved fast and accurate reconstruction of the seismic wavefield. Model and field data tests demonstrate that the Bregman iteration method based on the H-curve norm in the sparse transform domain can effectively reconstruct missing complex wavefield data.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
GOU Fu-Yan
LIU Cai
LIU Yang
FENG Xuan
CUI Fang-Zi
Key wordsBregman iteration   OC-seislet transform   seismic data interpolation   compressive sensing   H-curve norm     
Received: 2014-04-24;
Fund:

The research work is supported by the National Natural Science Foundation of China (Nos. 41274119, 41174080, and 41004041) and the 863 Program of China (No. 2012AA09A20103).

Cite this article:   
GOU Fu-Yan,LIU Cai,LIU Yang et al. Complex seismic wavefield interpolation based on the Bregman iteration method in the sparse transform domain[J]. APPLIED GEOPHYSICS, 2014, 11(3): 277-288.
 
[1] Abma, R., and Kabir, N., 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics, 71(6), E91-E97.
[2] Biondi, B., and Vlad, I., 2002, Amplitude preserving prestack imaging of irregularly sampled 3-D data: In 72nd SEG Annual International Meeting, Expanded Abstract, 2170-2173.
[3] Bregman, L. M., 1967, The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming: USSR Computational Mathematics and Mathematical Physics, 7(3), 200-217.
[4] Candès, E. J., 2006, Compressive sampling: Proceedings of the International Congress of Mathematicians, 3, 1433-1452.
[5] Chambolle, A., De Vore, R. A., Lee, N. Y., and Lucier, B. J., 1998, Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage: IEEE Transactions on Image Processing, 7(3), 319-335.
[6] Chen, S. S., Donoho, D. L., and Saunders, M. A., 1998, Atomic decomposition by basis pursuit: SIAM Journal on Scientific Computing, 20(1), 33-61.
[7] Daubechies, I., Defrise, M., and De Mol, C., 2004, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint: Communications on Pure and Applied Mathematics, 57(11), 1413-1457.
[8] Donoho, D. L., 2006, Compressed sensing: IEEE Transactions on Information Theory, 52(4), 1289-1306.
[9] Fomel, S., 2001, Three-dimensional seismic data regularization: Doctoral dissertation, Stanford University.
[10] Fomel, S. 2003, Differential azimuth moveout: 73rd Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2068-2071.
[11] Fomel, S., 2003, Theory of differential offset continuation: Geophysics, 68(2), 718-732.
[12] Fomel, S., 2003, Seismic reflection data interpolation with differential offset and shot continuation: Geophysics, 68(2), 733-744.
[13] Fomel, S., 2006, Towards the seislet transform: 76th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts. 2847-2851.
[14] Fomel, S., and Liu, Y., 2010, Seislet transform and seislet frame: Geophysics, 75(3), V25-V38.
[15] Gao, J. J., Chen, X. H., Li, J. Y., Liu, G. C., and Ma, J., 2010, Irregular seismic data reconstruction based on exponential threshold model of POCS method: Applied Geophysics, 7(3), 229-238.
[16] Geng, Y., Wu, R. S., and Gao, J. H., 2012, Dreamlet compression of seismic data: Chinese Journal of Geophysics, 55(8), 2705-2715.
[17] Guan, L. P., Tang, Y. X., and Wang, H. Z., 2009, Common-offset plane-wave prestack time migration and demigration: Chinese Journal of Geophysics, 52(5), 1301-1309.
[18] Gülünay, N., 2003, Seismic trace interpolation in the Fourier transform domain: Geophysics, 68(1), 355-369.
[19] Hansen, P. C., and O'Leary, D. P., 1993, The use of the L-curve in the regularization of discrete ill-posed problems: SIAM Journal on Scientific Computing, 14(6), 1487-1503.
[20] Liner, C. L., 1990, General theory and comparative anatomy of dip moveout: Geophysics, 55(5), 595-607.
[21] Liu, Y., and Fomel, S., 2010, OC-seislet: Seislet transform construction with differential offset continuation: Geophysics, 75(6), 235-245.
[22] Liu, X. W., Liu, H., and Liu, B., 2004, A study on reconstruction of dealiased uneven seismic data: Chinese Journal of Geophysics, 47(2), 333-341.
[23] Liu, Y., Fomel, S., and Liu, C., et al. 2009, High-order seislet transform and its application of random noise attenuation: Chinese Journal of Geophysics, 52(8),2142-2151.
[24] Lu, Y. H., Lu, W. K., and Zhai, Z. J., 2012, An edge-preserving seismic data interpolation method: Chinese Journal of Geophysics, 55(3), 991-997.
[25] Meng, X. H., Guo, L. H., Zhang, Z. F., Li, S. L., and Zhou, J. J., 2008, Reconstruction of Seismic Data with Least Squares Inversion Based on Nonuniform Fast Fourier Transform: Chinese Journal of Geophysics, 51(1), 168-175.
[26] Montefusco, L. B., and Papi, S., 2003, A parameter selection method for wavelet shrinkage denoising: BIT Numerical Mathematics, 43(3), 611-626.
[27] Natarajan, B. K., 1995, Sparse approximate solutions to linear systems: SIAM Journal on Computing, 24(2), 227-234.
[28] Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W., 2005, An iterative regularization method for total variation-based image restoration: Multiscale Modeling and Simulation, 4(2), 460-489.
[29] Rudin, L. I., Osher, S., and Fatemi, E., 1992, Nonlinear total variation based noise removal algorithms: Physica D, 60(1), 259-268.
[30] Sweldens, W., 1995, Lifting scheme: a new philosophy in biorthogonal wavelet constructions: Wavelet Applications in Signal and Image Processing III, Proceedings of SPIE 2569, 68-79.
[31] Sweldens, W., and Schröder, P., 1996, Building your own wavelets at home: Wavelets in Computer Graphics: ACM SIGGRAPH Course Notes, 15-87.
[32] Wang, W. H., Pei, J. Y., and Zhang, J. F., 2007, Prestack seismic data reconstruction using weighted parabolic Radon transform: Chinese Journal of Geophysics, 50(3), 851-859.
[33] Xin, K. F., Wang, H. Z., and Wang, C. L., 2002, Regularization of pre-stack seismic data: Oil Geophysical Prospecting (in Chinese), 37(4), 311-317.
[34] Xu, S., Zhang, Y., Pham, D., and Lambaré, G., 2005, Antileakage Fourier transform for seismic data regularization: Geophysics, 70(4), V87-V95.
[35] Yin, W., Osher, S., Goldfarb, D., and Darbon, J., 2008, Bregman iterative algorithms for L1-minimization with applications to compressed sensing: SIAM Journal on Imaging Sciences, 1(1), 143-168.
[36] Zhou, B., Mason, I. M., and Greenhalgh, S. A., 1996, An accurate formulation of log-stretch dip moveout in the frequency-wavenumber domain: Geophysics, 61(3), 815-820.
[37] Zwartjes, P., and Gisolf, A., 2007, Fourier reconstruction with sparse inversion: Geophysical Prospecting, 55(2), 199-221.
[1] Li Guang, Xiao Xiao, Tang Jing-Tian, Li Jin, Zhu Hui-Jie, Zhou Cong, Yan Fa-Bao. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering[J]. APPLIED GEOPHYSICS, 2017, 14(4): 581-590.
[2] Yang Ya-Peng, Wu Mei-Ping, Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
[3] Zhang Jun-Hua, Zhang Bin-Bin, Zhang Zai-Jin, Liang Hong-Xian, Ge Da-Ming. Low-frequency data analysis and expansion[J]. APPLIED GEOPHYSICS, 2015, 12(2): 212-220.
[4] CAI Rui, ZHAO Qun, SHE De-Ping, YANG Li, CAO Hui, YANG Qin-Yong. Bernoulli-based random undersampling schemes for 2D seismic data regularization[J]. APPLIED GEOPHYSICS, 2014, 11(3): 321-330.
[5] ZHANG Hua, CHEN Xiao-Hong, WU Xin-Min. Seismic data reconstruction based on CS and Fourier theory
[J]. APPLIED GEOPHYSICS, 2013, 10(2): 170-180.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn