APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2011, Vol. 8 Issue (2): 150-157    DOI: 10.1007/s11770-011-0275-3
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Attenuation compensation method based on inversion
Wang Shou-Dong1
1. College of Geophysics and Information Engineering, China University of Petroleum (Beijing), Beijing 102249, China.
 Download: PDF (900 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Attenuation compensation, which corrects the attenuation and dispersion of seismic waves, is one of the effective methods for improving seismic data resolution. In general, the attenuation compensation is achieved by an inverse Q-fi lter based on wave field continuation. In this paper, using the Futterman attenuation model, a method to compute synthetic seismogram is derived for an attenuation medium. Based on the synthetic method, the attenuation compensation problem is reduced to an inversion problem of the Fredholm integral equation and can be achieved by inversion. The Tikhonov regularization is used to improve inversion stability. The processing results of numerical simulation and real data show the effectiveness of the method.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Shou-Dong
Key wordsAttenuation compensation   inversion   Fredholm integral equation   inverse Q-fi lter   regularization     
Received: 2010-08-11;
Fund:

The research work is supported by National Basic Research Program of China (Grant No. 2007CB209604) and National Science and Technology Major Project (Grant No. 2008ZX05024-001-11).

Cite this article:   
WANG Shou-Dong. Attenuation compensation method based on inversion[J]. APPLIED GEOPHYSICS, 2011, 8(2): 150-157.
 
[1] Bickel, S. H., 1993, Similarity and the inverse Q filter: The Pareto-Levy stretch: Geophysics, 58(11), 1629 ? 1633.
[2] Hargreaves, N. D., and Calvert, A. J., 1991, Inverse Q filtering by Fourier transform: Geophysics, 56(4), 519 ? 527.
[3] Hargreaves, N. D., 1992, Similarity and the inverse Q filter: Some simple algorithms for inverse Q filtering: Geophysics, 57(3), 944 ? 947.
[4] Toverud, T., and Ursin, B., 2005, Comparison of seismic attenuation models using zero-offset vertical seismic profiling (VSP) data: Geophysics, 70(2), F17 ? F25.
[5] Varela,C. L., Rosa, A. L. R., and Ulrych T. J., 1993, Modeling of attenuation and dispersion: Geophysics, 50(8), 1167 ? 1173.
[6] Wang, Y., 2002, A stable and efficient approach of inverse Q filtering: Geophysics, 67(2), 657 ? 663.
[7] Wang, Y., 2003, Quantifying the effectiveness of stabilized inverse Q filtering: Geophysics, 68(1), 337 ? 345.
[8] Wang, Y., 2006, Inverse Q-filter for seismic resolution enhancement: Geophysics, 71(3), V51 ? V60.
[9] Yan, H. Y., and Liu, Y., 2009, Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves: Applied Geophysics, 6(1), 59 ? 69.
[10] Zhang, C., and Ulrych, T. J., 2007, Seismic absorption compensation: A least squares inverse scheme: Geophysics, 72(6), R109 ? R114.
[11] Zhang, X. W.,Han, L. G.,Zhang, F. J., and Shan, G. Y., 2007, An inverse Q-filter algorithm based on stable wavefield continuation: Applied Geophysics, 4(4), 263 ? 270.
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
[3] Wang En-Jiang, Liu Yang, Ji Yu-Xin, Chen Tian-Sheng, and Liu Tao. Q full-waveform inversion based on the viscoacoustic equation*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 83-98.
[4] Zhang Zhen-Bo, Xuan Yi-Hua, and Deng Yong. Simultaneous prestack inversion of variable-depth streamer seismic data*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 99-108.
[5] Meng Zhao-Hai, Xu Xue-Chun, and Huang Da-Nian. Three-dimensional gravity inversion based on sparse recovery iteration using approximate zero norm[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 524-535.
[6] Yang Hai-Yan, Li Feng-Ping, Chen Shen-En, Yue Jian-Hua, Guo Fu-Sheng, Chen Xiao, and Zhang Hua. An inversion of transient electromagnetic data from a conical source[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 545-555.
[7] Cao Xiao-Yue, Yin Chang-Chun, Zhang Bo, Huang Xin, Liu Yun-He, and Cai Jing. 3D magnetotelluric inversions with unstructured finite-element and limited-memory quasi-Newton methods[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 556-565.
[8] Liu Wei, Wang Yan-Chun, Li Jing-Ye, Liu Xue-Qing, and Xie Wei. Prestack AVA joint inversion of PP and PS waves using the vectorized reflectivity method[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 448-465.
[9] Ma Qi-Qi and Sun Zan-Dong. Elastic modulus extraction based on generalized pre-stack PP–PS joint linear inversion[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 466-480.
[10] Shi Cai-Wang and He Bing-Shou. Multiscale full-waveform inversion based on shot subsampling[J]. APPLIED GEOPHYSICS, 2018, 15(2): 261-270.
[11] Gao Zong-Hui, Yin Chang-Chun, Qi Yan-Fu, Zhang Bo, Ren Xiu-Yan, and Lu Yong-Chao. Transdimensional Bayesian inversion of time-domain airborne EM data[J]. APPLIED GEOPHYSICS, 2018, 15(2): 318-331.
[12] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[13] Li Chang-Zheng, Yang Yong, Wang Rui, Yan Xiao-Fei. Acoustic parameters inversion and sediment properties in the Yellow River reservoir[J]. APPLIED GEOPHYSICS, 2018, 15(1): 78-90.
[14] Sun Cheng-Yu, Wang Yan-Yan, Wu Dun-Shi, Qin Xiao-Jun. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. APPLIED GEOPHYSICS, 2017, 14(4): 551-558.
[15] Li Zhen-Chun, Lin Yu-Zhao, Zhang Kai, Li Yuan-Yuan, Yu Zhen-Nan. Time-domain wavefield reconstruction inversion[J]. APPLIED GEOPHYSICS, 2017, 14(4): 523-528.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn