APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2009, Vol. 6 Issue (3): 217-225    DOI: 10.1007/s11770-009-0025-y
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
A method for gravity anomaly separation based on preferential continuation and its application
Meng Xiao-Hong1,2, Guo Liang-Hui1,2, Chen Zhao-Xi2, Li Shu-Ling2, and Shi Lei2
1. State Key laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China.
2. Key Laboratory of Geo-detection (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China.
 Download: PDF (1099 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Based on the preferential continuation method proposed by Pawlowski (1995), we propose a method and procedure for gravity anomaly separation with the preferential upward continuation operator in the case that the various sources are uncorrelated with one another and the continuation height is enough large. We also present a method for estimating optimum upward-continuation height, based on analyzing the characteristics of the preferential upward continuation operators of a synthesized gravity anomaly varying with different continuation heights. The method is tested on the raw Bouguer gravity data over an iron deposit. The result shows that the method separates the data into regional anomaly and residual anomaly efficiently and clearly.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
MENG Xiao-Hong
GUO Liang-Hui
CHEN Zhao-Xi
LI Shu-Ling
SHI Lei
Key wordsPreferential continuation   gravity   anomaly separation   continuation height     
Received: 2009-06-23;
Fund:

The research is supported jointly by projects of the 863 Program (Grant Nos. 2006AA06Z111, 2006AA06A201-3, and 20060109A1002-0201-03).

Cite this article:   
MENG Xiao-Hong,GUO Liang-Hui,CHEN Zhao-Xi et al. A method for gravity anomaly separation based on preferential continuation and its application[J]. APPLIED GEOPHYSICS, 2009, 6(3): 217-225.
 
[1] Bhattacharyya, B. K., and Chan, K. C., 1977, Reduction of gravity and magnetic data on an arbitrary surface acquired in a region of high topographic relief: Geophysics, 42(7), 1411 - 1430.
[2] Chen, S., 1987, Gravity exploration: Geological Publishing House, Beijing.
[3] Dampney,C.N.G., 1969, The equivalent source technique: Geophysics, 34(1), 39 - 53.
[4] Maurizio Fedi, Antonio Rapolla, and Guido Russo, 1999, Upward continuation of scattered potential field data: Geophysics, 64(2), 443-451.
[5] Pawlowski, R. S., 1995, Preferential continuation for potential-field anomaly enhancement: Geophysics, 60(2), 390 - 398.
[6] Pilkington, M., and Urquhart, W. E. S., 1990, Reduction of potential field data to a horizontal plane: Geophysics, 55(5), 449 - 455.
[7] Xia, J., Sprowl, D. R., and Adkins-Heljeson, D., 1993, Correction of topographic distortion in potential field data: A fast and accurate approach: Geophysics, 58(4), 515 - 523.
[8] Xu, D., and Zeng, H., 2000, Preferential continuation and its application to Bouguer gravity anomaly in China : Geoscience (in Chinese), 14(2), 215 - 222.
[9] Zeng, H., 2005, Gravity field and gravity exploration: Geological Publishing House, Beijing.
[10] Zeng, H., and Xu, D., 2001, Discussion on “Preferential continuation for potential-field anomaly enhancement” (R. Pawlowski, Geophysics, 60(2), 390-398): Geophysics, 66, 695 - 697.
[11] Zeng, H., Xu, D., and Tan, H, 2008, A model study for estimating optimum upward- continuation height for gravity separation with application to a Bouguer gravity anomaly over a mineral deposit, Jilin province, northeast China: Geophysics, 72(4), I45 - I50.
[1] Hou Zhen-Long, Huang Da-Nian, Wang En-De, and Cheng Hao. 3D density inversion of gravity gradiometry data with a multilevel hybrid parallel algorithm[J]. APPLIED GEOPHYSICS, 2019, 16(2): 141-153.
[2] Dai Shi-Kun, Zhao Dong-Dong, Zhang Qian-Jiang, Li Kun, Chen Qing-Rui, and Wang Xu-Long. Three-dimensional numerical modeling of gravity anomalies based on Poisson equation in space-wavenumber mixed domain[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 513-523.
[3] Meng Zhao-Hai, Xu Xue-Chun, and Huang Da-Nian. Three-dimensional gravity inversion based on sparse recovery iteration using approximate zero norm[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 524-535.
[4] Sun Si-Yuan, Yin Chang-Chun, Gao Xiu-He, Liu Yun-He, and Ren Xiu-Yan. Gravity compression forward modeling and multiscale inversion based on wavelet transform[J]. APPLIED GEOPHYSICS, 2018, 15(2): 342-352.
[5] Liu Jin-Zhao, Wang Tong-Qing, Chen Zhao-Hui, Zhang Pin, Zhu Chuan-Dong, Zhang Shuang-Xi. Analyzing gravity anomaly variations before the 2016 Ms 6.4 earthquake in Menyuan, Qinghai with an interpolation/cutting potential field separation technique[J]. APPLIED GEOPHYSICS, 2018, 15(1): 137-146.
[6] Zhang Dai-Lei, Huang Da-Nian, Yu Ping, Yuan Yuan. Translation-invariant wavelet denoising of full-tensor gravity –gradiometer data[J]. APPLIED GEOPHYSICS, 2017, 14(4): 606-619.
[7] Wang Tai-Han, Huang Da-Nian, Ma Guo-Qing, Meng Zhao-Hai, Li Ye. Improved preconditioned conjugate gradient algorithm and application in 3D inversion of gravity-gradiometry data[J]. APPLIED GEOPHYSICS, 2017, 14(2): 301-313.
[8] Qiang Jian-Ke, Lu Kai, Zhang Qian-Jiang, Man Kai-Feng, Li Jun-Ying, Mao Xian-Cheng, Lai Jian-Qing. Frequency characteristics and far-field effect of gravity perturbation before earthquake[J]. APPLIED GEOPHYSICS, 2017, 14(1): 1-9.
[9] Shi Yan-Ling, Hu Zu-Zhi, Huang Wen-Hui, Wei Qiang, Zhang Sheng, Meng Cui-Xian, Ji Lian-Sheng. The distribution of deep source rocks in the GS Sag: joint MT–gravity modeling and constrained inversion[J]. APPLIED GEOPHYSICS, 2016, 13(3): 469-479.
[10] Song Li-Rong, Yu Chang-Qing, Li Gui-Hua, Feng Yang-Yang, He Jun-Jie. Characteristics of gravity anomalies and prediction of volcanosedimentary boron deposit distribution in the Xiongba area, Tibet[J]. APPLIED GEOPHYSICS, 2015, 12(4): 516-522.
[11] Hou Zhen-Long, Wei Xiao-Hui, Huang Da-Nian, Sun Xu. Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms[J]. APPLIED GEOPHYSICS, 2015, 12(3): 292-302.
[12] Liu Jin-Zhao, Liu Lin-Tao, Liang Xing-Hui, Ye Zhou-Run. 3D density inversion of gravity gradient data using the extrapolated Tikhonov regularization[J]. APPLIED GEOPHYSICS, 2015, 12(2): 137-146.
[13] Yang Ya-Peng, Wu Mei-Ping, Tang Gang. Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming[J]. APPLIED GEOPHYSICS, 2015, 12(2): 147-156.
[14] Xu Meng-Long, Yang Chang-Bao, Wu Yan-Gang, Chen Jing-Yi, Huan Heng-Fei. Edge detection in the potential field using the correlation coefficients of multidirectional standard deviations[J]. APPLIED GEOPHYSICS, 2015, 12(1): 23-34.
[15] WANG Zhu-Wen, XU Shi, LIU Yin-Ping, LIU Jing-Hua. Extrapolated Tikhonov method and inversion of 3D density images of gravity data[J]. APPLIED GEOPHYSICS, 2014, 11(2): 139-148.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn