APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (4): 453-460    DOI: 10.1007/s11770-013-0394-0
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme
Tian Yu-Kun1, Zhou Hui1, Chen Han-Ming1, Zou Ya-Ming1, and Guan Shou-Jun1
1. State Key Laboratory of Petroleum Resource and Prospecting, CNPC Key Lab of Geophysical Exploration, China University of Petroleum, Changping 102249,  China.
 Download: PDF (980 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Seismic inversion is a highly ill-posed problem, due to many factors such as the limited seismic frequency bandwidth and inappropriate forward modeling. To obtain a unique solution, some smoothing constraints, e.g., the Tikhonov regularization are usually applied. The Tikhonov method can maintain a global smooth solution, but cause a fuzzy structure edge. In this paper we use Huber-Markov random-field edge protection method in the procedure of inverting three parameters, P-velocity, S-velocity and density. The method can avoid blurring the structure edge and resist noise. For the parameter to be inverted, the Huber-Markov random-field constructs a neighborhood system, which further acts as the vertical and lateral constraints. We use a quadratic Huber edge penalty function within the layer to suppress noise and a linear one on the edges to avoid a fuzzy result. The effectiveness of our method is proved by inverting the synthetic data without and with noises. The relationship between the adopted constraints and the inversion results is analyzed as well.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
TIAN Yu-Kun
ZHOU Hui
CHEN Han-Ming
ZOU Ya-Ming
GUAN Shou-Jun
Key wordsHuber edge punishment function   markov random-field   bayesian fram, Central South University     
Received: 2013-03-20;
Fund:

This work was supported by the National Basic Research Program of China (973 Program) (No.2013CB228603), National Science and Technology major projects (No.2011ZX05024 and 2011ZX05010) and the National Natural Science Foundation  of  China (No.41174119).

Cite this article:   
TIAN Yu-Kun,ZHOU Hui,CHEN Han-Ming et al. Bayesian prestack seismic inversion with a self-adaptive Huber-Markov random-field edge protection scheme[J]. APPLIED GEOPHYSICS, 2013, 10(4): 453-460.
 
[1] Aki, K., and Richards, P. G., 2002, Quantitative Seismology: Univ. Science Books.
[2] Bertete-Aguirre, H., Cherkaev, E., and Oristaglio, M., 2002, Nonsmooth gravity problem with total variation penalization functional: Geophysical Journal International, 149(2), 499 - 507.
[3] Besag, J., 1974, Spatial interaction and the statistical analysis of lattice systems: Journal of the Royal Statistical Society, 36(2), 192 - 236.
[4] Bouman, C., and Sauer, K., 1993, A generalized Gaussian image model for edge-preserving MAP estimation: IEEE Trans. Image Processing, 2(7), 296 - 310.
[5] Buland, A., and Omre, H., 2003, Bayesian linearized AVO inversion: Geophysics, 68(1), 185 - 198.
[6] Farquharson, C., and Oldenburg, D., 1998, Nonlinear inversion using general measures of data misfit and model structure: Geophysical Journal International, 134(1), 213 - 227.
[7] Geman, D., and Reynolds, G., 1992, Constrained restoration and the recovery of discontinuities: IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), 367 - 383.
[8] Huber, P. J., 2011, Robust statistics. Springer Berlin Heidelberg.
[9] Li, X. C., and Zhu, S. A., 2007, A Survey of the Markov random field method for image segmentation: Journal of Image and Graphics, 12(5), 789 - 798.
[10] Partha, R., Mrinal, S., and Dan, W., 2008, Inversion using Bayesian hyper-prior formulation for sharp boundaries: 76th Annual International Meeting, SEG, Expanded Abstracts, 1238 - 1242.
[11] Portniaguine, O., and Zhadanov, M., 1999, Focusing geophysical inversion images: Geophysics, 64(3), 874 - 887.
[12] Schultz, R. R., and Stevenson, R. L., 1994, A Bayesian approach to image expansion for improved definition: IEEE Trans. Image Processing, 3(3), 233 - 242.
[13] Theune, U., Jensås, I. Ø., and Eidsvik, J., 2010, Analysis of prior models for a blocky inversion of seismic AVA data: Geophysics, 75(3), C25 - C35.
[14] Tian, Y. K., Zhou, H., and Yuan, S. Y., 2013, Lithologic discrimination method based on Markov random-field: Chinese J. Geophys., 56(4), 1360 - 1368.
[15] Walker, C., and Ulrych, T. J., 1983, Autoregressive recovery of the acoustic impedance: Geophysics, 48(10), 1338 - 1350.
[16] Xu, Z., and Lam, E. Y., 2009, Maximum a posteriori blind image deconvolutionwith Huber-Markov random-field regularization: Optics Letters, 34(9), 1453 - 1455.
[17] Yang, P. J., and Yin, X. Y., 2008, Non-linear quadratic programming Bayesian prestack inversion: Chinese J. Geophys., 51(6), 1876 - 1882.
[18] Yuan, S. Y., and Wang, S. X., 2013, Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints: Journal of Geophysics and Engineering, 10(2), 1 - 10.
[19] Yuan, S. Y., and Wang, S. X., 2013, Spectral sparse Bayesian learning reflectivity inversion: Geophysical Prospecting, 61(4), 735 - 746.
[20] Yuan, S. Y., Wang, S. X., and Li, G. F., 2012, Random noise reduction using Bayesian inversion: Journal of Geophysics and Engineering, 9(1), 60 - 68.
[21] Zhang, H. B., Shang Z. P., and Yang, C. C., 2005, Estimation of regular parameters for the impedance inversion: Chinese J. Geophys., 48(1), 181 - 188.
[22] Zhang, H. B., and Yang, C. C., 2003, A constrained impedance inversion method controlled by regularized parameters: Chinese J. Geophys., 46(6), 827 - 834.
[23] Zhang, S. M., 2011, Research of post-stack impedance inversion and AVA Three-term Simultaneous Inversion based on edge preserving blocky constrain: Ph.D. Thesis, Central South University.
[1] Wang Kang-Ning, Sun Zan-Dong, Dong Ning. Prestack inversion based on anisotropic Markov random field–maximum posterior probability inversion and its application to identify shale gas sweet spots[J]. APPLIED GEOPHYSICS, 2015, 12(4): 533-544.
[2] Zhang Ru-Wei, Li Hong-Qi, Zhang Bao-Jin, Huang Han-Dong, Wen Peng-Fei. Detection of gas hydrate sediments using prestack seismic AVA inversion[J]. APPLIED GEOPHYSICS, 2015, 12(3): 453-464.
[3] Huang Han-Dong, Wang Yan-Chao, Guo Fei, Zhang Sheng, Ji Yong-Zhen, Liu Cheng-Han. Zoeppritz equation-based prestack inversion and its application in fluid identification[J]. APPLIED GEOPHYSICS, 2015, 12(2): 199-211.
[4] LIU Cai, LI Bo-南, ZHAO Xu, LIU Yang, LU Qi. Fluid identification based on frequency-dependent AVO attribute inversion in multi-scale fracture media[J]. APPLIED GEOPHYSICS, 2014, 11(4): 384-394.
[5] LUO Chun-Mei, WANG Shang-Xu, YUAN San-Yi. Effect of inaccurate wavelet phase on prestack waveform inversion[J]. APPLIED GEOPHYSICS, 2014, 11(4): 479-488.
[6] CHEN Shuang-Quan, WANG Shang-Xu, ZHANG Yong-Gang, JI Min. Reservoir prediction using pre-stack inverted elastic parameters[J]. APPLIED GEOPHYSICS, 2009, 6(4): 375-384.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn