APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2013, Vol. 10 Issue (4): 373-383    DOI: 10.1007/s11770-013-0403-3
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference
Zhang Jian-Guo1,2, Wu Xin1, Qi You-Zheng1,2, Huang Ling1, and Fang Guang-You1
1. Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190, China.
2. University of Chinese Academy of Sciences, Beijing 100039, China.
 Download: PDF (1148 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In order to suppress the airwave noise in marine controlled-source electromagnetic (CSEM) data, we propose a 3D deconvolution (3DD) interferometry method with a synthetic aperture source and obtain the relative anomaly coefficient (RAC) of the EM field reflection responses to show the degree for suppressing the airwave. We analyze the potential of the proposed method for suppressing the airwave, and compare the proposed method with traditional methods in their effectiveness. A method to select synthetic source length is derived and the effect of the water depth on RAC is examined via numerical simulations. The results suggest that 3DD interferometry method with a synthetic source can effectively suppress the airwave and enhance the potential of marine CSEM to hydrocarbon exploration.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Jian-Guo
WU Xin
QI You-Zheng
HUANG Ling
FANG Guang-You
Key wordsmarine CSEM   reflection response   airwave   synthetic aperture method   3D deconvolution interferometry   up- and down-going field decomposition     
Received: 2013-08-13;
Fund:

This research is supported by the national project "Deep Exploration Technology and Experimentation" (SinoProbe-09-02).

Cite this article:   
ZHANG Jian-Guo,WU Xin,QI You-Zheng et al. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference
[J]. APPLIED GEOPHYSICS, 2013, 10(4): 373-383.
 
[1] Amundsen, L., Løseth, L., Mittet, R., Ellingsrud, S., and Ursin, B., 2006, Decomposition of electromagnetic fields into upgoing and downgoing components: Geophysics, 71(5), G211 - G223.
[2] Anderson, C., Long, A., Ziolkowski, A., Hobbs, B., and Wright, D., 2008, Multi-transient EM technology in practice: First break, 26, 93 - 102.
[3] Chen, J., and Alumbaugh, D., 2011, Three methods for mitigating airwaves in shallow water marine controlled- source electromagnetic data: Geophysics, 76(2), F89 - F99.
[4] Fan, Y. Z., and Snieder, R., 2009, 3-D controlled source electromagnetic interferometry by multidimensional deconvolution: 2009 SEG Annual Meeting, 41 - 49.
[5] Fan, Y. Z., Snieder, R., Slob, E., Hunziker, J., Singer, J., Sheiman, J., and Rosenquist, M., 2010, Synthetic aperture controlled source electromagnetic: Geophys. Res. Lett., 37, L13305.
[6] He, J. S., 2012, Marine electromagnetic principle, Higher Education Press(in Chinese), Beijing, 82 - 84.
[7] He, Z. X., Wang, Z. G., Meng, C. X., Sun, X. M., Hu, X. Y., and Xu, J. H., 2009, Data processing of marine CSEM based on 3D modeling: Chinese J. Geophys, (in Chinese), 52(8), 2165 - 2173.
[8] Hong, W., and Hu, D. H., 2007, Digital processing of synthetic aperture radar data: algorithms and implementation, Publishing House of Electronics Industry (in Chinese), Beijing, 1 - 6.
[9] Hunziker, J., Slob, E., Fan, Y., and Snieder, R., 2012, Two-dimensional controlled-source electromagnetic interferometry by multidimensional deconvolution: spatial sampling aspects: Geophysical Prospecting, 60, 974 - 994.
[10] Hunziker, J., Slob, E., Fan, Y., Snieder, R., and Wapenaar, K., 2013, Electromagnetic interferometry in wavenumber and space domains in a layered earth: Geophysics, 78(3), E137 - E148.
[11] Liu, C. S., and Lin, J., 2006, Transient electromagnetic response modeling of magnetic source on seafloor and the analysis of seawater effect: Chinese J. Geophys.(in Chinese), 49(6), 1891 - 1898.
[12] Liu, C. S., Everett, M. E., Lin, J., and Zhou, F. D., 2010, Modeling of seafloor exploration using electric-source frequency-domain CSEM and the analysis of water depth effect: Chinese J. Geophys.(in Chinese), 53(8), 1940 - 1952.
[13] Løseth, L. O., Amundsen, L., and Jenssen, A. J. K., 2010, A solution to the airwave- removal problem in shallow-water marine EM: Geophysics, 75(5), A37 - A42.
[14] Mittet, R., and Morten, J. P., 2012, Detection and imaging sensitivity of the marine CSEM method: Geophysics, 77(6), E411 - E425.
[15] Mittet, R., and Gabrielsen, P. T., 2013, Decomposition in upgoing and downgoing fields and inversion of marine CSEM data: Geophysics, 78(1), E1 - E17.
[16] Qu, K. X., and Liu, B. C., 2012, Compilations and monographs of geophysical instruments, Geological Publishing House (in Chinese), Beijing, 64 - 82.
[17] Slob, E., Draganov, D., and Wapenaar, K., 2007, Interferometric electromagnetic Green’s functions representations using propagation invariants: Geophys.J.Int., 169, 60 - 80.
[18] Slob, E., 2009, Interferometry by deconvolution of multicomponent multioffset GPR Data: IEEE Trans. Geosci. Remote Sens., 47(3), 828 - 838.
[19] Tang, J. T., Luo, W. B., and Liu, C. S., 2008, Impulse response of seafloor hydrocarbon reservoir model: Chinese J. Geophys.(in Chinese), 51(6), 1929 - 1935.
[20] Wapenaar, K., Slob, E., and Snieder, R., 2008, Seismic and electromagnetic controlled-source interferometry in dissipative media: Geophysical Prospecting, 56, 419 - 434.
[21] Weiss, C. J., 2007, The fallacy of the “shallow-water problem” in marine CSEM exploration: Geophysics, 72(6), A93 - A97.
[22] Wu, X., Zhu, W. H., Fang, G. Y., and Zhang, J. G., 2012, Optimization of PRBS coded transmitting current parameters for electric source and array receiving TEM: Near Surface Geoscience 2012, 93 - 97.
[23] Yin, C. C., Liu, Y. H., Weng, A. H., Jia, D. Y., and Ben, F., 2012, Research on marine controlled-source electromagnetic method airwave: Journal of Jilin University (Earth Science Edition), 42(5), 1506 - 1520.
[24] Ziolkowski, A., and Wright, D., 2007a, Removal of the airwave in shallow marine transient EM data: 77th Annual International Meeting, SEG, Expanded Abstract, 534 - 538.
[25] Ziolkowski, A., Hobbs, B. A., and Wright, D., 2007b, Multi-transient electromagnetic demonstration survey in France: Geophysics, 72(4), F197 - F209.
[26] Ziolkowski, A., 2007c, Optimisation of MTEM parameters: International Patent WO 2007/104949 A1, 2007-09-20.
[1] Wang Shu-Ming, Di Qing-Yun, Wang Ruo, Wang Xue-Mei, Su Xiao-Lu, Wang Peng-Fei. Removal of the airwave effect by main-part decomposition of the anomalous field of MCSEM data[J]. APPLIED GEOPHYSICS, 2018, 15(1): 3-10.
[2] Chen Kai, Wei Wen-Bo, Deng Ming, Wu Zhong-Liang, Yu Gang. A seafloor electromagnetic receiver for marine magnetotellurics and marine controlled-source electromagnetic sounding[J]. APPLIED GEOPHYSICS, 2015, 12(3): 317-326.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn