APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2011, Vol. 8 Issue (3): 207-216    DOI: 10.1007/s11770-011-0292-2
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Multi-wave amplitude-preserved AVO modeling considering wave propagation effects
Hou Bo1,2, Chen Xiao-Hong1,2, Li Jing-Ye1,2, and Zhang Xiao-Zhen3
1. State Key Lab of Petroleum Resource and Prospecting, Beijing 102249, China
2. CNPC Key Lab of China University of Petroleum(Beijing), Beijing 102249, China
3. Geological Scientifi c Research Institute of Shengli Oilfi eld, SINOPEC, Dongying 257015, China
 Download: PDF (291 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Traditional AVO forward modeling only considers the impact of reflection coeffi cients at the interface on seismic wave fi eld amplitude and ignores various propagation effects. Introducing wave propagation effects including geometric spreading, transmission loss, attenuation into seismic wave propagation, multi-wave amplitude-preserved AVO forward modeling for horizontally layered media based on ray theory is proposed in this paper. We derived the multi-wave geometric spreading correction formulas for horizontally layered media in order to describe the geometric spreading effect of multi-wave propagation. Introducing the complex traveltime directly, we built the relationship between complex traveltime and quality factor without the help of complex velocity to describe the attenuation of viscoelastic media. Multi-wave transmission coefficients, obtained by solving the Zoeppritz equations directly, is used to describe the transmission loss. Numerical results show that the effects of geometric spreading, attenuation, and transmission loss on multi-wave amplitude varies with offset and multi-wave amplitude-preserved AVO forward modeling should consider the reconstructive effect of wave propagation on refl ection amplitude.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
HOU Bo
CHEN Xiao-Hong
LI Jing-Ye
ZHANG Xiao-Zhen
Key wordsAmplitude-preserved AVO   geometric spreading   attenuation   transmission loss   complex traveltime   multi-wave     
Received: 2010-01-31;
Fund:

This research work is sponsored by the National Natural Science Foundation of China (Grant No. 41074098 ) and the National Basic Research Program of China (973 Program) (Grant No. 2007CB209606).

About author: Hou Bo is a doctorate student at China University of Petroleum (Beijing). His major is geophysical prospecting and his research work is mainly seismic wave propagation, imaging, and pre-stack seismic inversion.
Cite this article:   
HOU Bo,CHEN Xiao-Hong,LI Jing-Ye et al. Multi-wave amplitude-preserved AVO modeling considering wave propagation effects[J]. APPLIED GEOPHYSICS, 2011, 8(3): 207-216.
 
[1] Aki, K., and Richards, P. G., 1980, Quantitative seismology: Theory and methods,Vol. 1, W.H. Freeman & Co., San Francisco, CA.
[2] Bleistein, N., Cohen, J. K., and Stockwell, J. W., 2001, Mathematical Methods of Seismic Imaging, Migration and Inversion: Springer-Verlag, New York.
[3] Castagna, J. P., Swan, H. W., and Foster, D. J., 1998, Framework for AVO gradient and intercept interpretation: Geophysics, 63(3),948-956.
[4] Castagna, J. P., and Swan, H. W., 1997, Principles of AVO cross plotting: The Leading Edge, 16, 337-342.
[5] Cerveny, V., and Hron, F., 1980, The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media:Bull., Seis, Soc. Am., 70, 47-77.
[6] Cerveny, V., and Ravindra, R., 1971, Theory of seismic head waves: Univ. of Toronto Press, Canada.
[7] Cerveny, V., Molotkov, I. A., and Psencik, I., 1977, Ray method in seismology: Charles University, Prague.
[8] Che, C. X., Wang, X. M., and Lin, W. J., 2010, The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations, Applied Geophysics, 7(2), 174-184.
[9] 陈天胜, 刘洋, 魏修成, 2006, 纵波和转换波联合AVO反演方法研究: 中国石油人学学报(自然科学版), 30(1), 33-37.
[10] Foster, D. J., Keys, R. G., and Lane, F. D., 2010, Interpretation of AVO anomalies: Geophysics, 75(5), 75A3-75A13.
[11] Fuchs, K, Muller, G., 1971, Computation of synthetic seismograms with the reflectivity method and comparison with observations: Geophysical Journal Royal Astronomical Society, 23, 417- 433.
[12] Gidlow, P. M., Smith, G. C., and Vail, P. J., 1992, Hydrocarbon detection using fluid factor traces: Joint SEG/ EAGE Summer Research Workshop, Technical Program and Abstracts, 78-89.
[13] Hearn, D. J., and Krebest, E. S., 1990, On computing ray-synthetic seismograms for anelastic media using complex rays: Geophysics, 55(4) ,422-432.
[14] Hron, F., and Nechtschein, S., 1996, Extension of Asymptotic Ray Theory to linear viscoelastic media: 66th Annual International Meeting, SEG, Expanded Abstracts, 1983-1986.
[15] Hron, F., May, B. T., Covey, J. D., and Daley, P. F., 1986, Synthetic seismic sections for acoustic, elastic, anisotropic, and vertically inhomogeneous layered media: Geophysics, 51(3 ), 710-735.
[16] Kennett, B. L. N., 1983, Seismic wave propagation in stratified media: New York, Cambridge University Press, London.
[17] Koefoed, O., 1955, On the effect of Poisson’s ratios of rock strata on the reflection coefficients of plane waves: Geophysical Prospecting, 3, 381-387.
[18] Mallick, S., and Frazer, L. N., 1987, Practical aspects of reflectivity modeling: Geophysics, 52(10), 1355- 1364.
[19] Muller, G., 1985, The reflectivity method: a tutorial: Journal of Geophysics, 58, 153-174.
[20] Ostrander, W. J., 1984, Plane wave reflection coefficients for gas sands at nonnormal angles of incidence: Geophysics 49,1637-l 648.
[21] Rutherford, S. R., and Williams, R. H., 1989, Amplitude- versus-offset variations in gas sands: Geophysics, 54(6), 680-688.
[22] Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics, 50, 609-614.
[23] Wei, X. C., Chen T. S., and Ji, Y. X., 2008, Converted wave AVO inversion for average velocity ratio and shear wave reflection coefficient: 78th Annual International Meeting, SEG, Expanded Abstracts, 269-273.
[24] 杨培杰, 穆星, 印兴耀. 2009, 叠前三参数同步反演方法及其应用: 石油学报, 30(2), 232-236.
[25] 严哲, 顾汉明, 2010, 量子行为的粒子群算法在叠前AVO反演中的应用: 石油地球物理勘探, 45(4), 516-519.
[26] 张繁昌, 印兴耀, 2004, 一种叠前地震记录的全波场正反演方法: 石油物探, 43(3), 217-222.
[27] 张繁昌, 印兴耀, 2005, 层状半空间地震数据的弹性波方程反演:石油地球物理勘探, 40(5), 523-529.
[28] Zoeppritz, K., 1919, On the reflection and penetration of seismic waves through unstable layers: Goettinger Nachr, I, 66 - 84.
[1] Xie Wei, Wang Yan-Chun, Liu Xue-Qing, Bi Chen-Chen, Zhang Feng-Qi, Fang Yuan, and Tahir Azeem. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM*[J]. APPLIED GEOPHYSICS, 2019, 16(1): 70-82.
[2] Fang Yuan, Zhang Feng-Qi, Wang Yan-Chun. Generalized linear joint PP–PS inversion based on two constraints[J]. APPLIED GEOPHYSICS, 2016, 13(1): 103-115.
[3] HAN Jian-Guang, WANG Bin, HAN Ning, XING Zhan-Tao, LU Jun. Multiwave velocity analysis based on Gaussian beam prestack depth migration[J]. APPLIED GEOPHYSICS, 2014, 11(2): 186-196.
[4] YANG Xiao-Hui, CAO Si-Yuan, LI De-Chun, YU Peng-Fei, ZHANG Hao-Ran. Analysis of quality factors for Rayleigh channel waves[J]. APPLIED GEOPHYSICS, 2014, 11(1): 107-114.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn