APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2010, Vol. 7 Issue (3): 249-256    DOI: 10.1007/s11770-010-0247-4
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Coherence cube enhancement based on local histogram specification
Wang Ji1,2 and Lu Wen-Kai1

1. State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing 100084, China.
2. Xi'an Research Institute, China Coal Research Institute, Xi'an 710054, China.

 Download: PDF (1899 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Coherence analysis is a powerful tool in seismic interpretation for imaging geological discontinuities such as faults and fractures. However, subtle faults or fractures of one stratum are difficult to be distinguished on coherence sections (time slices or profiles) due to interferences from adjacent strata, especially these with strong reflectivity. In this paper, we propose a coherence enhancement method which applies local histogram specification (LHS) techniques to enhance subtle faults or fractures in the coherence cubes. Unlike the traditional histogram specification (HS) algorithm, our method processes 3D coherence data without discretization. This method partitions a coherence cube into many sub-blocks and self-adaptively specifies the target distribution in each block based on the whole distribution of the coherence cube. Furthermore, the neighboring blocks are partially overlapped to reduce the edge effect. Applications to real datasets show that the new method enhances the details of subtle faults and fractures noticeably.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
WANG Ji
LU Wen-Kai
Key wordscoherence cube   histogram specification   small fault   seismic interpretation     
Received: 2009-11-27;
Fund:

This work was sponsored by Important National Science and Technology Specific Projects of China (Grant No. 2008ZX05023-005-011 and No. 2008ZX05040-003) and the National 973 Program of China (Grant No. 2006CB202208).

Cite this article:   
WANG Ji,LU Wen-Kai. Coherence cube enhancement based on local histogram specification[J]. APPLIED GEOPHYSICS, 2010, 7(3): 249-256.
 
[1] Al-Dossary, S., and Marfurt, K. J., 2003, Improved 3-D seismic edge-detection filter applied to Vinton Dome Louisiana: 73th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2370 - 2372.
[2] Al-Dossary, S., and Marfurt, K. J., 2007, Lineament-preserving filtering: Geophysics, 72(1), P1 - P8
[3] Bahorich, M. S., and Farmer, S. L., 1995, 3-D seismic discontinuity for faults and stratigraphic features: The Leading Edge, 14, 1053 - 1058.
[4] Carter, N., and Lines, L., 2001, Fault imaging using edge detection and coherency measures on Hibernia 3-D seismic data: The Leading Edge, 20(1), 64 - 69.
[5] Coltuc, D., Bolon, P., and Chassery, J. M., 2006, Exact histogram specification: Transactions on Image Processing. 15(5), 1143 - 1152.
[6] Gersztenkorn, A., and Marfurt, K. J., 1999, Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping: Geophysics, 64(5), 1468 - 1479.
[7] Gonzales, R. C., and Woods, R. E., 2002, Digital image process: Prentice-Hall.
[8] Hassen, N. A., and Marfurt, K. J., 2003, Fault detection using Hough transforms: 73th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1719 - 1721.
[9] Hummel, R. A., 1977, Image enhancement by histogram transformation: Computer Graphics and Image Processing, 6, 184 - 195.
[10] Kim, J. Y., Kim, L. S., and Hwang, S. H., 2001, An advanced contrast enhancement using partially overlapped block histogram equalization: IEEE Transactions on Circuits and Systems for Video Technology, 11(4), 475 - 484.
[11] Knuth, D. E., 1973, The art of computer programming, volume3 sorting and searching: Addison-Wesley.
[12] Lawrence, P., 1998, Seismic attributes in the characterization of small-scale reservoir faults in Abqaiq Field: The Leading Edge, 17(4), 521 - 525.
[13] Li, Y. D., Lu, W. K., Zhang, S. W. and Xiao, H. Q., 2006, Dip scanning coherence algorithm using eigenstructure analysis and super-trace technique, Geophysics, 71(3), 61 - 66.
[14] Lu, W. K., Li, Y. D., Xiao, H. Q., and Zhang, S. W., 2005, Higher-order statistics and super-trace based coherence estimation algorithm: Geophysics, 70(3), 13 - 18.
[15] Marfurt, K. J., Kirlin, R. L., Farmer, S. L., and Bahorich, M. S., 1998, 3-D seismic attributes using a semblance-based coherence algorithm: Geophysics, 63(4), 1150 - 1165.
[16] Narhari, S. R., Singh, S. K., Al-Ajmi, N. H., and Al-Eidan, A. J., 2007, Seismic attributes in the search for fracture plays: 77th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 417 - 421.
[17] Neves, F. A., Zahrani, M. S., and Bremkamp, S. W., 2004, Detection of potential fractures and small faults using seismic attributes: The Leading Edge, 23(9), 903 - 906.
[18] Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B. H., Zimmerman, J. B. and Zuiderveld, K., 1987, Adaptive histogram equalizations and its variations: Comp. Vis., Graphics and Image Processing, 39(3), 355 - 368.
[19] Sanguinetti, R., 2006, Image processing techniques applied to 3-D attribute volumes for lithology distribution: 76th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 1806 - 1810.
[20] Skirius, C., Nissen, S., and Marfurt, K. J., 1999, 3-D seismic attributes applied to carbonates: The Leading Edge, 18, 384 - 389.
[21] Wan, Y., and Shi, D., 2007, Joint exact histogram specification and image enhancement through the wavelet transform: IEEE Transactions on Image Processing, 16(9), 2245 - 2250.
[22] Zhang, Y. J., 1992, Improving the accuracy of direct histogram specification: IEEE Electronics Letters, 28(3), 213 - 214.
[1] Hu Jun, Cao Jun-Xing, He Xiao-Yan, Wang Quan-Feng, and Xu Bin. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 2018, 15(3-4): 367-381.
[2] Ji Zhan-Huai, Yan Sheng-Gang. Properties of an improved Gabor wavelet transform and its applications to seismic signal processing and interpretation[J]. APPLIED GEOPHYSICS, 2017, 14(4): 529-542.
[3] Yin Chen. Fault detection based on microseismic events[J]. APPLIED GEOPHYSICS, 2017, 14(3): 363-371.
[4] Deng Shi-Wu, Jia Yu, Yao Xing-Miao, Liu Zhi-Ning. A method of reconstructing complex stratigraphic surfaces with multitype fault constraints[J]. APPLIED GEOPHYSICS, 2017, 14(2): 195-204.
[5] DOU Xi-Ying, HAN Li-Guo, WANG 恩Li, DONG Xue-Hua, YANG Qing, YAN Gao-Han. A fracture enhancement method based on the histogram equalization of eigenstructure-based coherence[J]. APPLIED GEOPHYSICS, 2014, 11(2): 179-185.
[6] CHEN Xue-Hua, YANG Wei, HE Zhen-Hua, ZHONG Wen-Li, WEN Xiao-Tao. The algorithm of 3D multi-scale volumetric curvature and its application*[J]. APPLIED GEOPHYSICS, 2012, 9(1): 65-72.
[7] Hu Jun, Cao Jun-Xing, He Xiao-Yan, Wang Quan-Feng, and Xu Bin. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 0, (): 367-381.
[8] Deng Shi-Wu, Jia Yu, Yao Xing-Miao, Liu Zhi-Ning. A method of reconstructing complex stratigraphic surfaces with multitype fault constraints[J]. APPLIED GEOPHYSICS, 0, (): 195-204.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn