APPLIED GEOPHYSICS
 
        Home  |  Copyright  |  About Journal  |  Editorial Board  |  Indexed-in  |  Subscriptions  |  Download  |  Contacts Us  |  中文
APPLIED GEOPHYSICS  2012, Vol. 9 Issue (4): 440-450    DOI: 10.1007/s11770-012-0356-y
article Current Issue | Next Issue | Archive | Adv Search Previous Articles  |  Next Articles  
Inverting reservoir parameters in a two-phase fractured medium with a niche genetic algorithm
Zhang Sheng-Qiang1, Han Li-Guo1, Liu Chun-Cheng2, Zhang Yi-Ming2, and Gong Xiang-Bo1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. CNOOC Research Institute, Beijing 100027, China.
 Download: PDF (972 KB)   HTML ( KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversion problem of the wave equation in a two-phase medium. We propose a niche genetic multi-parameter (including porosity, solid phase density and fluid phase density) joint inversion algorithm based on a two-phase fractured medium in the BISQ model. We take the two-phase fractured medium of the BISQ model in a two-dimensional half space as an example, and carry out the numerical reservoir parameters inversion. Results show that this method is very convenient for solving the parameters inversion problem for the wave equation in a two-phase medium, and has the advantage of strong noise rejection. Relative to conventional genetic algorithms, the niche genetic algorithm based on a sharing function can not only significantly speed up the convergence, but also improve the inversion precision.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
ZHANG Sheng-Qiang
HAN Li-Guo
LIU Chun-Cheng
ZHANG Yi-Ming
GONG Xiang-Bo
Key wordsParameters inversion   niche genetic algorithm   BISQ model   two-phase fractured medium   wave equation     
Received: 2012-05-30;
Fund:

This research is sponsored by the National Science and Technology Major Project (Grant No. 2011ZX05025-001-07).

Cite this article:   
ZHANG Sheng-Qiang,HAN Li-Guo,LIU Chun-Cheng et al. Inverting reservoir parameters in a two-phase fractured medium with a niche genetic algorithm[J]. APPLIED GEOPHYSICS, 2012, 9(4): 440-450.
 
[1] Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range: The Acoustical Society of America, 28(2), 168 - 178.
[2] Biot, M.A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Acoustical Society of America, 28(2), 179 - 191.
[3] Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms: Geophysics, 58(4), 524 - 533.
[4] Dvorkin, J., Nolen-Hoeksema, R., and Nur, A., 1994, The squirt-flow mechanism: Macroscopic description: Geophysics, 59(3), 428 - 438.
[5] Deb, K., and Goldberg, D. E., 1989, An investigation of niche and species formation in genetic function optimization: The3rd International Conference on Genetic Algorithms, 42 - 50.
[6] Deb, K., and Agrawal, R. B., 1994, Simulated binary crossover for continuous search space: Complex Systems, 1(9), 115 - 148.
[7] Frind, E.O., and Pinder, G.F., 1973, Galerkin solution of the inverse problem for aquifer transmissivity: Water Resources Research, 9(5), 1397 - 1410.
[8] Goldberg, D. E., and Richardson, J. J.,1987, Genetic algorithms with sharing for multimodal function optimization: Genetic algorithms and their application: Proceedings of the Second International Conference on Genetic Algorithms, 41 - 49.
[9] Han, H., Zhang, Z. M., and Wei, P. J., 2003, Homotopy method for inversing two parameters of 2-D wave equation in porous media: Engineering Mechanics (in Chinese), 20(4), 110 - 115.
[10] Liu, K. A., Liu, H. W., Guo, B. Q., Guan,Y. J., Zhang, X. J., and Gao, X. Y., 1997, Time-convolution regularization iteration for simultaneous inversion of three parameters of 2-D wave equation in two-phase medium: Oil Geophysical Prospecting(in Chinese), 32(5), 615 - 622.
[11] Liu, W. G., and Quan, D. Y., 1998, An approach to inverse porosity in a fluid-saturated porous solid: Journal of Harbin Institute of Technology (in Chinese), 30(4), 1 - 3.
[12] Meng, Q. S., 2003, A study on numerical modeling of elastic wave field and azimuth characteristic in double-phase crack media based on BISQ model: PhD Thesis, Jilin University, Changchun.
[13] Nie, J. X., Yang, D. H., and Yang, H. Z., 2004, Inversion of reservoir parameters based on the BISQ model in partially saturated porous media: Chinese Journal of Geophysics (in Chinese), 47(6), 1101 - 1105.
[14] Tian, D. P., 2007, An adaptive genetic algorithm combining with chaos searching: M. Sc Thesis, Shanghai Normal University, Shanghai.
[15] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 51(4), 889 - 901.
[16] Wang, Z. J., He, Q. D., and Wang, D. L., 2008, The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model: Applied Geophysics, 5(1), 24 - 34.
[17] Wei, P. J., Zhang, Z. M., and Han, H., 2002, Parameter inverse of porous media by genetic algorithms: Acta Mechanica Solida Sinica (in Chinese), 23(4), 459 - 462.
[18] Xu, D., 2008, Nonlinear inversion of two-phase medium reservoir parameter: PhD Thesis, Chengdu University of Technology, Chengdu.
[19] Yang, D. H., and Zhang, Z. J., 2002, Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy: Wave Motion, 35(3), 223 - 245.
[20] Yang, D. H., and Zhang, Z. J., 2000, Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves: Chinese Science Bulletin, 45(23), 2130 - 2138.
[21] Yang, K. D., Yang, D. H., and Wang, S. Q., 2002, Wave-field simulation based on the Biot-Squirt equation: Chinese Journal of Geophysics(in Chinese), 45(6), 853 - 861.
[22] Zhang, X. M., Zhou, C. Y., Liu, J. Q., and Liu, K. A., 2009, Multiparameter inversion in the fluid-saturated porous medium with wavelet multiscale-regularized gauss newton method: Journal of Basic Science and Engineering (in Chinese), 17(4), 580 - 589.
[23] Zhang, X. W., 2010, The reservoir seismic prediction technology and reservoir geophysics parameters inversion: PhD Thesis, Jilin University, Changchun.
[24] Zhou, M., and Sun, S. D., 1999, Genetic algorithms: Theory and applications: National Defence Industrial Press, Beijing.
[25] Zhang, X. J., 2001, Genetic algorithm optimization and its application in inversion of geophysical parameters: M.Sc Thesis, Tsinghua University, Beijing.
[1] Zhang Gong, Li Ning, Guo Hong-Wei, Wu Hong-Liang, Luo Chao. Fracture identification based on remote detection acoustic reflection logging[J]. APPLIED GEOPHYSICS, 2015, 12(4): 473-481.
[2] MA Ji-Qiang, GENG Jian-Hua. Cauchy prior distribution-based AVO elastic parameter estimation via weakly nonlinear waveform inversion[J]. APPLIED GEOPHYSICS, 2013, 10(4): 442-452.
[3] DUAN Yu-Ting, HU Tian-Yue, YAO Feng-Chang, ZHANG Yan. 3D elastic wave equation forward modeling based on the precise integration method[J]. APPLIED GEOPHYSICS, 2013, 10(1): 71-78.
[4] JIANG Lian, WEN Xiao-Tao, ZHOU Dong-Hong, HE Zhen-Hua, HE Xi-Lei. The constructing of pore structure factor in carbonate rocks and the inversion of reservoir parameters*[J]. APPLIED GEOPHYSICS, 2012, 9(2): 223-232.
[5] SONG Jian-Yong, ZHENG Xiao-Dong, QIN Zhen, SU Ben-Yu. Multi-scale seismic full waveform inversion in the frequency-domain with a multi-grid method[J]. APPLIED GEOPHYSICS, 2011, 8(4): 303-310.
[6] SONG Jian-Yong, ZHENG Xiao-Dong, ZHANG Yan, XU Ji-Xiang, QIN Zhen, SONG Xue-Juan. Frequency domain wave equation forward modeling using gaussian elimination with static pivoting[J]. APPLIED GEOPHYSICS, 2011, 8(1): 60-68.
[7] ZHOU Hui, WANG Shang-Xu, LI Guo-Fa, SHEN Jin-Song. Analysis of complicated structure seismic wave fields[J]. APPLIED GEOPHYSICS, 2010, 7(2): 185-192.
[8] WANG Xiang-Chun, XIA Chang-Liang, LIU Xue-Wei. Downward and upward continuation of 2-D seismic data to eliminate ocean bottom topography’s effect[J]. APPLIED GEOPHYSICS, 2010, 7(2): 149-157.
[9] DU Qi-Zhen, LI Bin, HOU Bo. Numerical modeling of seismic wavefields in transversely isotropic media with a compact staggered-grid finite difference scheme[J]. APPLIED GEOPHYSICS, 2009, 6(1): 42-49.
Copyright © 2011 APPLIED GEOPHYSICS
Support by Beijing Magtech Co.ltd support@magtech.com.cn