APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 421-428    DOI: 10.1007/s11770-012-0354-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
横波速度预测的边界加权平均法
刘灵1,耿建华1,郭彤楼2
1. 同济大学海洋地质国家重点实验室,上海 200092
2. 中国石化勘探南方分公司,四川成都 610041
The bound weighted average method (BWAM) for predicting S-wave velocity
Liu Ling1, Geng Jian-Hua1, and Guo Tong-Lou2
1. State Key laboratory of Marine Geology, Tongji University, Shanghai 200092, China.
2. SINOPEC Southern Company, Chengdu 610041, China.
 全文: PDF (1071 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 横波速度是进行叠前地震反演和叠前地震属性分析的必要资料,但目前绝大多数钻井缺少横波测井资料,本文提出了一种简单但又涵盖了影响岩石地震波传播速度基本要素的横波速度预测方法,即通过对模量的Voigt上边界和Reuss下边界的加权平均来求取等效弹性模量,进而计算出横波速度,加权系数w本质上反映了组成岩石骨架的矿物颗粒与孔隙的几何性质,由纵波模量拟合得到。通过对四川盆地东北部Y井碳酸盐岩实际测井数据的处理,证明边界加权平均法能准确有效地预测出碳酸盐岩横波速度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘灵
耿建华
郭彤楼
关键词横波速度预测   边界加权平均   纵波模量   横波模量   碳酸盐岩     
Abstract: The shear-wave velocity is a very important parameter in oil and gas seismic exploration, and vital in prestack elastic-parameters inversion and seismic attribute analysis. However, shearing-velocity logging is seldom carried out because it is expensive. This paper presents a simple method for predicting S-wave velocity which covers the basic factors that influence seismic wave propagation velocity in rocks. The elastic modulus of a rock is expressed here as a weighted arithmetic average between Voigt and Reuss bounds, where the weighting factor, w, is a measurement of the geometric details of the pore space and mineral grains. The S-wave velocity can be estimated from w, which is derived from the P-wave modulus. The method is applied to process well-logging data for a carbonate reservoir in Sichuan Basin, and shows the predicted S-wave velocities agree well with the measured S-wave velocities.
Key wordsS-wave velocity prediction   Voigt-Reuss bounds   weighting factor   P-wave modulus   S-wave modulus   carbonate   
收稿日期: 2011-09-19;
基金资助:

国家高技术研究发展计划(863计划)(2008AA093001)与中国石化科技部(YPH08006)资助课题。

引用本文:   
刘灵,耿建华,郭彤楼. 横波速度预测的边界加权平均法[J]. 应用地球物理, 2012, 9(4): 421-428.
LIU Ling,GENG Jian-Hua,GUO Tong-Lou. The bound weighted average method (BWAM) for predicting S-wave velocity[J]. APPLIED GEOPHYSICS, 2012, 9(4): 421-428.
 
[1] Berryman, J. G., 1980b, Long-wavelength propagation in fluid-saturated propous media: J. Acoust. Soc. Am., 68, 1809 - 1831.
[2] Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials, J. mech. Phys. Solids, 13, 223 - 227.
[3] Castagna, J. P., Batzle, M. L., and Eastwood, R. L., 1985, Relatonships between compressional-wave and shear-wave velocities in clasticsilicaterock: Geophysics, 50(4), 571 - 581.
[4] Gardner, G. H. F., and Gardner, L. W., 1974, Formation velocity and density-The diagnostic basics for stratigraphic traps: Geophysics, 39, 770 - 780.
[5] Hill, R., 1952, The elastic behavior of crystalline aggregate: Proc Physical Soc, London A, 65(A), 349 - 354
[6] Hill, R., 1965, A self-consistent mechanics of composite materials: Mech, J., Phys. Solids, 11, 357 - 372.
[7] Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic): The Log Analyst, 31, 355 - 369.
[8] Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media: Geophysics, 39, 587 - 618.
[9] Lee, M. W.,2006, A simple method of predicting S-wave velocity: Geophysics, 71(6), 161 - 164.
[10] Marion, D., and Nur, A., 1991, Pore-filling material and its effect on velocity in rocks: Geophysics, 56(2), 225 - 230
[11] Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook:Tools for seismic analysis in porous media: Cambridge University Press.
[12] Norris, A. N., 1985, A differential scheme for the effective moduli of composite, Mech., Mater., 4, 1 - 16.
[13] Pickett, G. R., 1963, Acoustic character logs and their applications in formation evaluation: Pet. Technol, 15, 650 - 667.
[14] Wu, T. T., 1966, The effect of inclusion shape on the elastic moduli of two-phase material: Int. J. Solids Structures, 2, 1 - 8.
[15] Xu, S., and White, R. E., 1995, A new velocity model for clay-sand mixtures: Geophys Prospecting, 43, 91 - 118.
[16] Yan, F. Y., and Han, D. H., 2011, Theoretical validation of fluid substitution by Hashin-Shtrikman bounds: 81th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2251 - 2254.
[17] Xu, S., and White, R. E., 1995, A new velocity model for clay-sand mixtures: Geophys Prospecting, 43, 91 - 118.
[18] Yan, F. Y., and Han, D. H., 2011, Theoretical validation of fluid substitution by Hashin-Shtrikman bounds: 81th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2251 - 2254.
[1] 马琦琦,孙赞东. 基于叠前PP-PS波联合广义线性反演的弹性模量提取方法[J]. 应用地球物理, 2018, 15(3-4): 466-480.
[2] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[3] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[4] 李雄炎, 秦瑞宝, 刘春成, 毛志强. 基于岩石导电效率建立碳酸盐岩储层饱和度的计算方法[J]. 应用地球物理, 2014, 11(2): 215-222.
[5] 郭玉倩, 马宏达, 石开波, 曹宏, 黄录忠, 姚逢昌, 胡天跃. 多孔颗粒上界限模型及其在塔里木碳酸盐岩中的应用[J]. 应用地球物理, 2013, 10(4): 411-422.
[6] 李景叶, 陈小宏. 地震尺度下碳酸盐岩储层的岩石物理建模方法[J]. 应用地球物理, 2013, 10(1): 1-13.
[7] 聂建新, 巴晶, 杨顶辉, 晏信飞, 袁振宇, 乔海鹏. 基于Kelvin-Voigt黏弹性骨架的含非饱和流体孔隙介质BISQ模型[J]. 应用地球物理, 2012, 9(2): 213-222.
[8] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[9] 李宁, 武宏亮, 冯庆付, 王克文, 石玉江, 李庆峰, 罗兴平. 火山岩、白云岩储层基质孔隙度评价方法及应用效果分析[J]. 应用地球物理, 2009, 6(3): 287-298.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司