APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2025, Vol. 22 Issue (2): 472-487    DOI: 10.1007/s11770-025-1173-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于多源数据决策层融合的隧道突水突泥风险预测研究
张世殊*,王鹏,肖华波,王怀兵,薛翊国,陈卫东,张开
1. 中国电建集团成都勘测设计研究院有限公司,四川成都610072;2. 山东大学岩土于地下工程研究院,山东济南250061;3. 中国地质大学(北京)工程技术学院,北京100083
Risk Prediction of Tunnel Water and Mud Inrush Based on Decision-Level Fusion of Multisource Data
Shi-shu Zhang*, Peng Wang, Hua-bo Xiao, Huai-bing Wang, Yi-guo Xue, Wei-dong Chen, Kai Zhang
1. PowerChina Chengdu Engineering Corporation Limited, Chengdu 610072, China 2. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, China 3. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对传统综合预报方法的精确性和时效性不足,引入多源数据决策层融合技术,本文通过分析预测隧道段的超前预报资料建立隧道突水突泥风险的预报指标体系,并结合层次分析法与Huber加权法确定指标权重,采用多源数据决策层融合算法形成隧道突水突泥风险结果融合成像,并对不同里程段突水突泥问题风险性进行分析,560实现指标体系内部在空间和时间上的互补与冗余信息的优化,并在CZ项目隧道段实例中验证模型的可行性,实现了信息高效融合与决策支持。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词隧道突水突泥   预测方法   风险指标   多源数据   决策层融合     
Abstract: This paper addresses the accuracy and timeliness limitations of traditional comprehensive prediction methods by proposing an approach of decision-level fusion of multisource data. A risk prediction indicator system was established for water and mud inrush in tunnels by analyzing advanced prediction data for specifictunnel segments. Additionally, the indicator weights were determined using the analytic hierarchy process combined with the Huber weighting method. Subsequently, a multisource data decision-layer fusion algorithm was utilized to generate fused imaging results for tunnel water and mud inrush risk predictions. Meanwhile, risk analysis was performed for different tunnel sections to achieve spatial and temporal complementarity within the indicator system and optimize redundant information. Finally, model feasibility was validated using the CZ Project Sejila Mountain Tunnel segment as a case study, yielding favorable risk prediction results and enabling efficient information fusion and support for construction decision-making.
Key wordsTunnel water and mud inrush    prediction methods    risk indicators, multisource data    decisionlevel fusion   
收稿日期: 2024-10-07;
基金资助:本研究得到国家自然科学基金(批准号:42293351、U2468221)的资助。
通讯作者: 张世殊 (Email: 1992070@chidi.com.cn).     E-mail: 1992070@chidi.com.cn
作者简介: 张世殊,教授级高级工程师、国家注册岩土工程师,现任中国电建集团成都勘测设计研究院有限公司党委副书记。2019年获国家科学技术进步奖二等奖,长期从事水电工程地质勘察、地质灾害防治及新能源项目规划开发研究
引用本文:   
. 基于多源数据决策层融合的隧道突水突泥风险预测研究[J]. 应用地球物理, 2025, 22(2): 472-487.
. Risk Prediction of Tunnel Water and Mud Inrush Based on Decision-Level Fusion of Multisource Data[J]. APPLIED GEOPHYSICS, 2025, 22(2): 472-487.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司