APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2024, Vol. 21 Issue (2): 303-315    DOI: 10.1007/s11770-022-0975-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于深度学习的地层倾角计算方法研究
丰超*,潘建国,姚清洲,王宏斌,张希晨
1、中国石油勘探开发研究院西北分院,兰州 730020
Calculation method of formation dip angle based on deep learning
Feng Chao*, Pan Jian-Guo, Yao Qing-Zhou, Wang Hong-Bin, Zhang Xi-Chen
1. Northwest Branch of Research Institute of Petroleum Exploration & Development, Lanzhou, Gansu, 730020, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地层倾角是反映地下构造的重要特征参数之一,在地震勘探和地质解释中应用广泛。然而常规倾角计算方法存在假象干扰、精度不足等问题,制约了精细勘探技术的发展,如何更加准确求取地层倾角成为普遍关注的问题。针对该问题,本文提出一种基于深度学习的地层倾角计算方法,将倾角计算看作回归问题,通过建立合成地震数据与倾角数据标签库,利用数据驱动拟合地震数据与倾角之间的非线性函数关系,进而实现倾角智能计算。将本方法在合成沉积模型与实际资料分别进行了验证,并与业界主流倾角计算方法效果对比,结果展示出了本方法更加真实的反映构造起伏特征,兼具准确性与抗干扰能力。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词卷积神经网络   地层倾角   倾角扫描   平面波分解     
Abstract: The formation dip angle is an important characteristic parameter that reflects underground structures, and it is widely used in seismic exploration and geological interpretation. However, the routine dip angle calculation method suffers from the problems of artifact interference and insufficient accuracy, which restricts the development of fine exploration technology. More accurately obtaining the formation dip angle has become a general concern. To solve these problems, this paper proposes a method for calculating the formation dip angle using deep learning. The dip angle calculation is considered a regression problem. By establishing a database of synthetic seismic data and dip data tags, datadriven fitting of nonlinear functional relationships between the seismic data and dip angles are achieved, and intelligent dip calculations are realized. The method is verified using the synthetic sedimentary model and actual data and is compared with the mainstream dip angle calculation method in the industry. The results show that this method more realistically reflects the undulating characteristics of a structure with both high accuracy and anti-interference ability.
Key wordsConvolutional neural network    Formation dip    Dip scan    Plane-wave decomposition   
收稿日期: 2020-04-27;
基金资助:This study is funded by the CNPC (China National Petroleum Corporation) Scientific Research and Technology Development Project (Grant No.2021DJ05).
通讯作者: 丰超 (Email:feng_chao@petrochina.com.cn).     E-mail: feng_chao@petrochina.com.cn
作者简介: Feng Chao graduated from China University of Petroleum (East China) with a master's degree in 2015. Now he is an engineer engaged in the research of oil and gas geophysics and reservoir prediction technology in the Northwest Branch of China Petroleum Exploration and Development Research Institute.
引用本文:   
. 基于深度学习的地层倾角计算方法研究[J]. 应用地球物理, 2024, 21(2): 303-315.
. Calculation method of formation dip angle based on deep learning[J]. APPLIED GEOPHYSICS, 2024, 21(2): 303-315.
 
没有本文参考文献
[1] 钱佳威*, 郑强强, 宁佳迪. 基于地震台阵的矿山爆破当量估算: 以安徽滁州地区为例[J]. 应用地球物理, 2024, 21(1): 179-187.
[2] 李琼,陈政,何建军,郝思宇,王睿,杨海涛,孙华军,李美琦. 利用全卷积神经网络(FCN)建立三维数字岩心*[J]. 应用地球物理, 2020, 17(3): 401-410.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司