APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2020, Vol. 17 Issue (3): 338-348    DOI: 10.1007/s11770-020-0823-9
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于综合地球物理参数的二连盆地潜力凹陷贝叶斯优选*
徐凤姣1,唐传章2,严良俊♦,1,陈清礼1,冯广业2
1. 油气资源与勘探技术教育部重点实验室(长江大学),湖北武汉 430100;
2. 中国石油华北油田分公司,河北任丘 062552
Bayesian prediction of potential depressions in the Erlian Basin based on integrated geophysical parameters*
Xu Feng-Jiao 1, Tang Chuan-Zhang 2, Yan Liang-Jun♦1, Chen Qing-Li 1, and Feng Guang-Ye 2
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources (Yangtze University), Ministry of Education,Wuhan 430100, China;
2. Huabei Oilfi eld Company, CNPC, Renqiu 062552, China.
 全文: PDF (1281 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地质与地球物理综合研究查明二连盆地中小凹陷65个。在优选开发的22个凹陷中,14个凹陷出油,表明二连盆地良好的油气远景。本文以二连盆地已完成勘探的凹陷为研究对象,首先了分析了凹陷的地质与重、磁、电异常特征,总结出与含油气相关性较强的组合特征参数(平均剩余重力异常值、平均剩余磁力异常值、低阻层平均埋深和凹陷地表平均海拔)并对其进行频态特征分析, 结果表明各特征参数均具有高斯分布特征和贝叶斯理论应用基础。其次,提出基于特征参数先验信息条件下凹陷出油贝叶斯后验概率计算方法。通过已开发的凹陷出油特征信息验证了该方法的有效性与合理性,并确定了二连盆地潜力凹陷定量优选标准的含油气阈值。最后,用此标准求取了剩余43个凹陷的出油后验概率,结合出油阈值,优选出5个潜力凹陷。本文提出的凹陷评价方法充分利用重磁电数据及地质先验信息,具有定量和快速特点,对具备凹陷群特征的盆地油气综合地球物理评价有重要的参考价值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词潜力凹陷   贝叶斯预测   特征参数   先验信息   后验概率     
Abstract: In this study, we analyzed the geological, gravity, magnetic, and electrical characteristics of depressions in the Erlian Basin. Based on the results of these analyses, we could identify four combined feature parameters showing strong correlations and sensibilities to the reservoir oil-bearing conditions: the average residual gravity anomaly, the average magnetic anomaly, the average depth of the conductive key layer, and the average elevation of the depressions. The feature parameters of the 65 depressions distributed in the whole basin were statistically analyzed: each of them showed a Gaussian distribution and had the basis of Bayesian theory. Our Bayesian predictions allowed the definition of a formula to calculate the posterior probability of oil occurrence in the depressions based on the combined characteristic parameters. The feasibility of this prediction method was verifi ed by considering the results obtained for the 22 drilled depressions. Subsequently, we were able to determine the oilbearing threshold of hydrocarbon potential for the depressions in the Erlian Basin, which can be used as a standard for quantitative optimizations. Finally, the proposed prediction method was used to calculate the probability of hydrocarbons in the other 43 depressions. Based on this probability and on the oil-bearing threshold, the five depressions with the highest potential were selected as targets for future seismic explorations and drilling. We conclude that the proposed method, which makes full use of massive gravity, magnetic, electric, and geological data, is fast, effective, and allows quantitative optimizations; hence, it will be of great value for the comprehensive geophysical evaluation of oil and gas in basins with depression group characteristics.
Key wordsPotential depressions   Bayesian prediction   feature parameters   a priori information   posterior probability   
收稿日期: 2019-09-25;
基金资助:

基金资助项目:本研究项目由国家重点研发计划(2018YFC0603302),油气资源与勘探技术教育部重点实验室(长江大学)开放基金(PI2018-01,K2017-23)和华北油田产学研项目资助。

通讯作者: 严良俊 (Email: yljemlab@163.com)     E-mail: yljemlab@163.com
作者简介: 徐凤姣,长江大学博士研究生, 2 016 年硕士毕业于长江大学。目前主要从事综合地球物理方法研究与应用。Email: xfj2018@Hotmail.com
引用本文:   
. 基于综合地球物理参数的二连盆地潜力凹陷贝叶斯优选*[J]. 应用地球物理, 2020, 17(3): 338-348.
. Bayesian prediction of potential depressions in the Erlian Basin based on integrated geophysical parameters*[J]. APPLIED GEOPHYSICS, 2020, 17(3): 338-348.
 
没有本文参考文献
[1] 印兴耀, 孙瑞莹, 王保丽, 张广智. 基于地质统计先验信息的储层物性参数同步反演[J]. 应用地球物理, 2014, 11(3): 311-320.
[2] 杨锴, 周星, 李辉, 刘玉柱. 基于Monte Carlo方法的近地表速度模型建模研究[J]. 应用地球物理, 2012, 9(4): 475-482.
[3] 黄哲远, 甘利灯, 戴晓峰, 李凌高, 王军. 随机地震反演关键参数优选和效果分析[J]. 应用地球物理, 2012, 9(1): 49-56.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司