APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2020, Vol. 17 Issue (2): 171-181    DOI: 10.1007/s11770-020-0819-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
基于DTW 距离的变厚度地层地震波形聚类方法*
洪忠1,2, 李坤鸿1, 苏明军2, 胡光岷1
1. 信息地学研究中心 电子科技大学,四川 成都 611731;
2.中国石油 勘探开发研究院西北分院,甘肃 兰州 730020
A DTW distance-based seismic waveform clustering method for layers of varying thickness*
Hong Zhong 1,2, Li Kun-Hong 1, Su Ming-Jun 2, Hu Guang-Min?1, Yang Jun 3, Gao Gai 4, and Hao Bin 2
1. University of Electronic Science and Technology of China, The Center for Information Geoscience, Chengdu 611731,China.
2. PetroChina Research Institute of Exploration and Development (RIPED)-Northwest, Lanzhou 730020, China.
3. PetroChina Yumen Oilfi eld Company, Research Institute of Exploration and Development, Jiuquan 735000, China.
4. PetroChina Changqing Oilfi eld Company, Research Institute of Exploration and Development, Xi’an 710018, China.
 全文: PDF (1838 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 地震波形聚类技术是岩相识别和储层表征的有效手段。现今的波形聚类方法都基于等厚时窗研发,适用于厚度稳定的地层。当地层的地震时间厚度不恒定时,沿层提取的等长度地震波形难以准确、完整的包含目的层的岩性及岩性组合信息。为此,我们研发了适用于变厚度地层的地震波形聚类方法。首次应用DTW(动态时间规整)距离来有效度量不同长度地震波形间的相似性。其次, 研发了基于DTW 距离的波形聚类方法来提取地震道质心,并根据地震道和质心的DTW距离判别地震道的类别;研发了基于超像素的地震抽稀算法,为解决该波形聚类算法在应用于三维地震资料时所面临的大运算量问题。我们将地震数据抽稀和基于DTW 距离的波形聚类算法相结合,形成了一套适用于生产的基于DTW 距离的变厚度地层地震波形聚类技术完整流程。地震正演测试表明:同传统基于等时窗的波形聚类技术相比,该方法能准确的识别变厚度不同岩性或岩性组合的边界。在实际工区测试中,基于新方法的波形聚类平面图与井上储层厚度的匹配程度较高,可作为地震储层预测和井位部署的可靠依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词DTW 距离   变厚度地层   地震波形聚类   超像素   地震数据抽稀     
Abstract: Seismic waveform clustering is a useful technique for lithologic identification and reservoir characterization. The current seismic waveform clustering algorithms are predominantly based on a fixed time window, which is applicable for layers of stable thickness. When a layer exhibits variable thickness in the seismic response, a fixed time window cannot provide comprehensive geologic information for the target interval. Therefore, we propose a novel approach for a waveform clustering workflow based on a variable time window to enable broader applications. The dynamic time warping (DTW) distance is fi rstintroduced to effectively measure the similarities between seismic waveforms with various lengths. We develop a DTW distance-based clustering algorithm to extract centroids, and we then determine the class of all seismic traces according to the DTW distances from centroids. To greatly reduce the computational complexity in seismic data application, we propose a superpixel-based seismic data thinning approach. We further propose an integrated workfl owthat can be applied to practical seismic data by incorporating the DTW distance-based clustering and seismic data thinning algorithms. We evaluated the performance by applying the proposed workflow to synthetic seismograms and seismic survey data. Compared with the the traditional waveform clustering method, the synthetic seismogram results demonstrate the enhanced capability of the proposed workflow to detect boundaries of diff erent lithologies or lithologic associations with variable thickness. Results from a practical application show that the planar map of seismic waveform clustering obtained by the proposed workflow correlates well with the geological characteristics of wells in terms of reservoir thickness.
Key wordsDTW distance   seismic waveform clustering   variable time window   seismic data thinning   
收稿日期: 2020-02-17;
基金资助:

本研究项目由国家科技重大专项(编号:2017ZX05001-003)资助。

通讯作者: 胡光岷(hgm@uestc.edu.cn)     E-mail: hgm@uestc.edu.cn
作者简介: 洪忠,电子科技大学博士研究生在读,中国石油勘探开发研究院西北分院高级工程师。2010 年硕士毕业于长江大学,目前主要从事地震解释、储层预测及智能物探方法研究。
引用本文:   
. 基于DTW 距离的变厚度地层地震波形聚类方法*[J]. 应用地球物理, 2020, 17(2): 171-181.
. A DTW distance-based seismic waveform clustering method for layers of varying thickness*[J]. APPLIED GEOPHYSICS, 2020, 17(2): 171-181.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司