APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2020, Vol. 17 Issue (1): 13-25    DOI: 10.1007/s11770-020-0806-x
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
一种自适应多分辨率图聚类测井相分析方法
武宏亮1,王晨3,冯周1,原野1,王华锋♦ 2,3,徐彬森1,倪婉纯3,潘海侠3,许鑫3
1、中国石油勘探开发研究院,北京,100083;
2、北方工业大学,北京,100144;
3、北京航空航天大学,北京,100191
Adaptive multi-resolution graph-based clustering algorithm for electrofacies analysis*
Wu Hongliang 1, Wang Chen 3, Feng Zhou 1, Yuan Ye 1, Wang Hua-Feng?2,3, and Xu Bin-Sen 1
1. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China.
2. School of Computer Science and Technology, North China University of Technology, Beijing 100144, China.
3. College of Software, Beihang University, Beijing 100191, China.
 全文: PDF (1488 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 测井相分析是通过自动聚类方法对多维测井曲线进行分析,进而进行相聚类与预测。基于图的多分辨率聚类(Multi-Resolution Graph-based Clustering,MRGC)方法是一种常用的测井相分析方法,然而MRGC 算法非常耗时,并且在传播过程中高度依赖初始参数,实际应用效益差。本文提出了一种自适应多分辨率图聚类 (Adaptive Multi Resolution Graph based Clustering,AMRGC) 分析方法。该方法不仅能提高测井相计算效率,而且能获得稳定的测井相传播结果。本文方法的两个核心算法是: 1)轻核代表指数(L-KRI)算法只需计算少量“自由吸引”点,有效提高了计算效率; 2)采用了反向传播算法(BP)与多层感知器(MLP)神经网络,有效避免了传统K 近邻算法因随机初始化参数导致的不稳定结果。实验结果表明,本文方法在聚类和传播预测任务上优于传统的MRGC方法,具有更高的运行效率和稳定性;同时,在没有数据先验知识的条件下效果明显优于自组织映射(SOM)、动态聚类(DYN)和自底向上的层次聚类(AHC)等其它常用聚类方法。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词MRGC   AMRGC   MLP   测井相分析     
Abstract: Logging facies analysis is a signifi cant aspect of reservoir description. In particular,as a commonly used method for logging facies identifi cation, Multi-Resolution Graph-based Clustering (MRGC) can perform depth analysis on multidimensional logging curves to predict logging facies. However, this method is very time-consuming and highly dependent on the initial parameters in the propagation process, which limits the practical application effect of the method. In this paper, an Adaptive Multi-Resolution Graph-based Clustering (AMRGC) is proposed, which is capable of both improving the efficiency of calculation process and achieving a stable propagation result. More specifically, the proposed method, 1) presents a light kernel representative index (LKRI) algorithm which is proved to need less calculation resource than those kernel selection methods in the literature by exclusively considering those “free attractor” points; 2) builds a Multi-Layer Perceptron (MLP) network with back propagation algorithm (BP) so as to avoid the uncertain results brought by uncertain parameter initializations which often happened by only using the K nearest neighbors (KNN) method. Compared with those clustering methods often used in image-based sedimentary phase analysis, such as Self Organizing Map (SOM), Dynamic Clustering (DYN) and Ascendant Hierarchical Clustering (AHC), etc., the AMRGC performs much better without the prior knowledge of data structure. Eventually, the experimental results illustrate that the proposed method also outperformed the original MRGC method on the task of clustering and propagation prediction, with a higher effi ciency and stability.
Key wordsMRGC   AMRGC   MLP   logging facies analysis   
收稿日期: 2019-09-28; 出版日期: 2020-09-04
基金资助:

本研究项目由中国石油集团公司科技项目2018D-5010-16 和2019D-3808 共同资助。

通讯作者: 王华锋 (Email: wanghuafeng@ncut.edu.cn)     E-mail: wanghuafeng@ncut.edu.cn
作者简介: 武宏亮,高级工程师,2013 年于中国石油勘探开发研究院获地球探测与信息技术专业博士学位。目前为中国石油勘探开发研究院企业专家,致力于测井处理解释方法方面的研究。
引用本文:   
. 一种自适应多分辨率图聚类测井相分析方法[J]. 应用地球物理, 2020, 17(1): 13-25.
. Adaptive multi-resolution graph-based clustering algorithm for electrofacies analysis*[J]. APPLIED GEOPHYSICS, 2020, 17(1): 13-25.
 
没有本文参考文献
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司