[an error occurred while processing this directive]
APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  0, Vol. Issue (): 367-381    DOI: 10.1007/s11770-018-0693-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
水力压裂对断层应力场扰动的数值模拟
胡隽1,2,曹俊兴2,何晓燕2,王权锋1,徐彬1
1. 成都理工大学数学地质四川省重点实验室,四川成都 610059
2. 成都理工大学油气藏地质及开发工程国家重点实验室,四川成都 610059
Numerical simulation of fault activity owing to hydraulic fracturing
Hu Jun1,2, Cao Jun-Xing2, He Xiao-Yan2, Wang Quan-Feng1, and Xu Bin1
1. Chengdu University of Technology, Geomathematics Key Laboratory of Sichuan Province, Chengdu 610059, China.
2. Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610059, China.
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 用有限差分程序Flac3D构建了水力压裂对邻近断层应力场扰动的三维模型,对压裂过程中模型内部及断层面的孔隙压力、剪切应力和正应力的演化进行了详细分析。模拟所用的岩石力学参数为研究区页岩样品的室内测试数据,断层参数主要参考乐义乡-扎子坳逆断层的主要性质。模拟结果表明,16小时压裂注水所产生的孔隙压力变化能够形成附近断层的明显活化,其上下盘观察到显著的相对滑动,断层面上的剪切应力及位移也逐渐增大。值得注意的是,施加孔隙压力的第1个小时内体现出最为强烈的应力应变,屈服点出现在注水后0.5h左右。为了便于观察各个截面的应力场演化过程,限制了边界上的法向位移,断层面也进行了非渗透设定,这些假设限制了大滑动变形的发生,使得模拟得出的剪切位移量仅有毫米量级,诱发震级基本在Mw-3.5,至Mw-0.2之间。另外,模拟结果显示出压裂注水后岩体内部发生的不均匀破裂,主要破裂区域位于压裂注水点附近,其他区域的破裂程度虽相对较小,但是仍然能够在断层面上观察到不可忽略的活化现象。关键参数的灵敏度分析表明孔隙压力对最大不平衡力的敏感度最高,内摩擦角则对断层滑动量的影响更大。最后,通过比较断层面上有效正应力和最大最小主应力的模拟结果,发现断层失稳的力学解释是莫尔圆向左移动的同时半径减小,使其更易与临界包络线相交致使断层面发生滑动。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词水力压裂   孔隙压力   断层活化   诱发地震   数值模拟     
Abstract: We built a three-dimensional model to simulate the disturbance of the stress field near the reverse fault in Zhaziao, Leyi Township owing to hydraulic fracturing. The pore pressure, and shear and normal stresses  during fracturing are analyzed in detail. Input rock mechanics parameters are taken from laboratory test data of shale samples from the study area. The simulation results suggest that after 16 hours of fluid injection, the pore-pressure variation can activate the reverse fault, i.e., we observe reverse slip, and the shear stress and displacement on the fault plane increase with time. The biggest stress–strain change occurs after one hour of fluid injection and the yield point appears about 0.5 h after injection. To observe the stress evolution in each section, the normal displacement on the boundary is constrained and the fault plane is set as nonpermeable. Thus, the  sliding is limited and the shear displacement is only in the scale of millimeters, and the calculated magnitude of the induced earthquakes is between Mw-3.5 and Mw-0.2. The simulation results suggest that fluid water injection results in inhomogeneous fracturing. The main ruptured areas are around the injection positions, whereas the extent of rupturing and cracks in other areas are relatively small. Nevertheless, nonnegligible fault activation is recorded. Sensitivity analysis of the key parameters suggests that the pore pressure is most sensitive to the maximum unbalanced force and the internal friction angle strongly affects the fault slip. Finally, the comparison between the effective normal stress and the maximum and minimum principal stresses on the fault plane explains the fault instability, i.e., the Mohr circle moves towards the left with decreasing radius reduces and  intersects the critical slip envelope, and causes the fault to slip.
Key wordsHydraulic fracturing   pore pressure   fault activation   induced earthquakes   numerical simulation   
收稿日期: 2018-03-02;
基金资助:

本研究由国家自然科学基金(编号:41604050和41774192)资助。

引用本文:   
. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 0, (): 367-381.
. Numerical simulation of fault activity owing to hydraulic fracturing[J]. APPLIED GEOPHYSICS, 0, (): 367-381.
 
[1] Kanamori, H., and Brodsky, E. E., 2004, The physics of earthquakes: Physics Today, 54(6), 1429−1496. Doi:10.1088/0034-4885/67/8/R03.
[2] Atkinson, C., Smelser, R. E., and Sanchez, J., 1982, Combined mode fracture via the cracked Brazilian disk test: International Journal of Fracture, 18(4), 279-291.
[3] Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H., 2017, Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China: Scientific reports, 7, 7971. Doi:10.1038/s41598-017-08557-y.
[4] Li, K., Zhang, H., Ran, C., and Shao, M. J., 2016, Productivity Model of Shale Gas Well with Consideration of Stress Sensitivity: Taking Longmaxi Formation Shale Gas Reservoir in Southeastern Sichuan Basin as an Example: Journal of Xi'an Shiyou University (Natural Science Edition), 31(3), 57−61. Doi: 10.3969/ j.issn.1673-064X.2016.03.009
[5] Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y. J., van der Baan, M., and Kao, H., 2016, Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin: Seismological Research Letter, 87(3), 631−647. Doi:10.1785/0220150263.
[6] Li, Q. H., Chen, M., Jin, Y., Hou, B., and Zhang, J. Z., 2012, Rock mechanical properties and brittleness evaluation of shale gas reservoir:. Petroleum Drilling Techniques, 40(4), 18−22. Doi:10.3969/ j.issn.1001-0890.2012.04.004.
[7] Bao, X. W., and Eaton, D. W., 2016, Fault activation by hydraulic fracturing in western Canada: Science, 354(6318), 1406−1409. Doi:10.1126/science.aag,2583.
[8] Li, Z. L., Zhang, H. C., Ren, Q. W., and Wang, Y. H., 2005, Analysis of hydraulic fracturing and calculation of critical internal water pressure of rock fracture: Rock and Soil Mechanics, 26(8), 1216−1220.
[9] Chen, J. G., Deng, J. G., Yuan, J. L., Yan, W., Yu, B. H., and Tan, Q., 2015, Determination of fracture toughness of modes I and II of shale formation: Chinese Journal of Rock Mechanics and Engineering, 34(6), 1101−105. Doi:10.13722/j.cnki.jrme.2014.1187.
[10] Liu, S. G., Ma, W. X., Luba, J., Huang, W. M., Zeng, X. L., and Zhang, C. J., 2011, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China: Acta Petrologica Sinica, 27(8), 2239−2252. Doi: 1000-0569/2011/027(08)-2239-52.
[11] Clarke, H., Eisner, L., Styles, P., and Turner, P., 2014. Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe. Geophysical Research Letters, 2015, 41(23), 8308−8314. Doi:10.1002/2014GL062047.
[12] Lund Snee, J. -E., and Zoback, M. D., 2016, State of stress in Texas: Implications for induced seismicity: Geophysical Research Letters, 43, 10208−10214. Doi:10.1002/2016GL070974.
[13] Crampin, S., Peacock, S., Gao, Y., and Chastin, S., 2004. The scatter of time-delays in shear-wave splitting above small earthquakes: Geophys. J. Int., 156, 39−44.
[14] McGarr, A., 1991, On a possible connection between three major earthquakes in California and oil production. BSSA, 81(3), 948−970.
[15] Crampin, S., and Gao, Y., 2013, The new geophysics: Terra Nova, 25(3), 173−180.
[16] McGarr, A., 2014, Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth. 119(2), 1008-1019. Doi:10.1002/2013JB010597.
[17] Plenefisch, T., and Bonjer, K. P., 1997, The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters: Tectonophysics, 275, 71−97.
[18] Deng, K., Liu, Y. J., and Harrington, R. M., 2016, Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence: Geophysical Research Letters, 43, 8482-8491. Doi:10.1002/2016GL070421.
[19] Ding, S. D., and Sun, L. M., 1997, Fracture mechanics: China Machine Press, Beijing.
[20] Schultz, R., Stern, V., Novakovic, M., Atkinson, G., and Gu, Y. J., 2015, Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks: Geophys. Res. Lett. 42, 2750−2758. Doi:10.1002/2015GL063455.
[21] Skoumal, R., Brudzinski, M. R., and Currie, B. S., 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio: Bull. Seismol. Soc. Am. 105(1), 189-197. Doi:10.1785/0120140168.
[22] Song, C. P., Lu, Y. Y., Jia, Y. Z., and Xia, B. W., 2014, Effect of Coal-Rock interface on hydraulic fracturing propagation: Journal of Northeastern University (Natural Science), 35(9), 1340-1345.
[23] Ellsworth, W. L., 2013, Injection-induced earthquakes: Science, 341(6142), 142. Doi:10.1126/science. 1225942.
[24] Wang, J. L., Liu, G. J., Wang, W. Z., Zhang, S. J., and Yuan, L. L., 2013, Characteristics of pore-fissure and permeability of shales in the LongmaxiFormation in southeastern Sichuan Basin: Journal of China Coal Society, 38(5), 772−777. Doi: 0253-9993(2013)05-0772-06.
[25] Friberg, P. A., Besana-Ostman, G. M., and Dricker, L., 2014, Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio: Seismol. Res. Lett., 85(6), 1295−1307. Doi: 10.1785/0220140127.
[26] Wang, Q., Wang, P., Xiang, D. G., and Feng, Y. S., 2012, Anisotropic property of mechanical parameters of shales: Natural Gas Industry, 32(12), 62−65. Doi:10.3787/j.issn.1000-0976.2012.12.013.
[27] Galis, M., Ampuero, J. P., Mai, P. M., and Cappa, F., 2017, Induced seismicity provides insight into why earthquake ruptures stop: Science Advances, 3(12), eaap7528. Doi:10.1126/sciadv.aap7528.
[28] Holland, A. A., 2013, Earthquakes triggered by hydraulic fracturing in south-central Oklahoma: Bulletin of the Seismological Society of America, 103(3), 1784-1792. Doi: 10.1785/0120120109.
[29] Itasca Consulting Group Inc., 2015, FLAC3D-fast Lagrangian analysis of continua in 3 dimensions: User’s Manual, Minneapolis: Itasca.
[30] Irwin, G. R., 1947, Fracture dynamics: Fracturing of Metals Seminar, American Society for Metals, 147−166.
[31] Jaeger, J. C., and Cook, N. G. W., 2007, Fundamentals of Rock Mechanics (4th Edition): Chapman and Hall, London.
[32] Kanamori, H., and Anderson, D. L., 1975, Theoretical basis of some empirical relations in seismology: Bull. Seismol.Soc.Am, 65(5), 1073-1095.
[33] Kanamori, H., and Brodsky, E. E., 2004, The physics of earthquakes: Physics Today, 54(6), 1429−1496. Doi:10.1088/0034-4885/67/8/R03.
[34] Wang, Y. M., Dong, D. Z., Li, J. Z., Wang, S. J., Li, X. J., Wang, L., Cheng, K. M., and Huang, J. L., 2012, Reservior characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan: Acta Petrolei Sinica, 33(4), 551−561. Doi: 0253-2697(2012)04-0551-11.
[35] Wei, X. C., Li, Q., Li, X. Y., and Niu, Z. Y., 2016, Modeling the hydromechanical responses of sandwich structurefaults during underground fluid injection: Environment Earth Science (2016), 75, 1155. Doi:10. 1007/s12665-016-5975-9.
[36] Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H., 2017, Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China: Scientific reports, 7, 7971. Doi:10.1038/s41598-017-08557-y.
[37] Zoback, M. L., 1992, Stress field constrains on intraplate seismicity in Eastern North America: Journal of Geophysics Research, 97(B8), 11761−11782.
[1] 胡隽,曹俊兴,何晓燕,王权锋,徐彬. 水力压裂对断层应力场扰动的数值模拟[J]. 应用地球物理, 2018, 15(3-4): 367-381.
[2] 戴世坤,赵东东,张钱江,李昆,陈轻蕊,王旭龙. 基于泊松方程的空间波数混合域重力异常三维数值模拟[J]. 应用地球物理, 2018, 15(3-4): 513-523.
[3] 胡松,李军,郭洪波,王昌学. 水平井随钻电磁波测井与双侧向测井响应差异及其解释应用[J]. 应用地球物理, 2017, 14(3): 351-362.
[4] 杨思通,魏久传,程久龙,施龙青,文志杰. 煤巷三维槽波全波场数值模拟与波场特征分析[J]. 应用地球物理, 2016, 13(4): 621-630.
[5] 付博烨,符力耘,魏伟,张艳. 超声岩石物理实验尾波观测中边界反射的影响分析[J]. 应用地球物理, 2016, 13(4): 667-682.
[6] 陶蓓,陈德华,何晓,王秀明. 界面不规则性对套后超声波成像测井响应影响的模拟研究[J]. 应用地球物理, 2016, 13(4): 683-688.
[7] 常江浩,于景邨,刘志新. 煤矿老空水全空间瞬变电磁响应三维数值模拟及应用[J]. 应用地球物理, 2016, 13(3): 539-552.
[8] 张钱江,戴世坤,陈龙伟,强建科,李昆,赵东东. 基于网格加密-收缩的2.5D直流电法有限元模拟[J]. 应用地球物理, 2016, 13(2): 257-266.
[9] 刘洋, 李向阳, 陈双全. 高精度双吸收边界条件在地震波场模拟中的应用[J]. 应用地球物理, 2015, 12(1): 111-119.
[10] Cho, Kwang-Hyun. 爆炸与天然地震的区别[J]. 应用地球物理, 2014, 11(4): 429-436.
[11] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[12] 何怡原, 张保平, 段玉婷, 薛承瑾, 闫鑫, 何川, 胡天跃. 水力压裂产生的地表和地下变形场数值模拟[J]. 应用地球物理, 2014, 11(1): 63-72.
[13] 赵建国, 史瑞其. 时域有限元弹性波模拟中的位移格式完全匹配层吸收边界[J]. 应用地球物理, 2013, 10(3): 323-336.
[14] 刘云, 王绪本, 王赟. 线源二维时间域瞬变电磁二次场数值模拟[J]. 应用地球物理, 2013, 10(2): 134-144.
[15] 杨瑞召, 赵争光, 彭维军, 谷育波, 王占刚, 庄熙勤. 三维地震属性及微地震数据在致密砂岩气藏开发中的综合应用[J]. 应用地球物理, 2013, 10(2): 157-169.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司