APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2017, Vol. 14 Issue (2): 314-321    DOI: 10.1007/s11770-017-0622-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
千年尺度的中国大陆及邻近区域非偶极子磁场的时空变化研究
冯彦1,2,蒋勇1
1. 南京信息工程大学数学与统计学院,南京 210044
2. 中国科学院空间天气学国家重点实验室,北京 100080
Regional spatiotemporal variations of a nondipole magnetic field over the Chinese mainland and neighboring regions in millennial scale
Feng Yan1,2 and Jiang Yong1
1. The College of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China.
2. State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100080, China.
 全文: PDF (619 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 通过最新的全球地磁模型——CALS10K.1b,结合CALS3K.4与IGRF11模型,计算并分析了10000BC ~1990AD期间中国大陆及邻近地区非偶极子(ND)磁场Z分量的时空变化。为了深入了解ND场的变化,从场源的角度,对2n(n=2–10)极子ND场及其对应的能量进行了分析。结果显示在研究期间ND场的变化可分为3个阶段。在10000BC–2500BC期间,ND场以正值为主并持续了近7500a,在2500BC–1500AD期间强度转弱为以负值为主并持续至1500AD,自此快速增强为以正值为主。东亚地区ND场异常基本在截断阶数(n)为3时即形成,且该异常区已在大陆地区内形成了封闭的圆形区域,这意味着前3阶的ND场占据了总ND场强度的大部分。ND场在核幔边界(CMB)处衰减较快,在地表处则趋于稳定。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词地磁场   非偶极子   CALS10K.1b   IGRF11     
Abstract: Spatiotemporal variations of the nondipole (ND) magnetic field over the Chinese mainland and neighboring regions from 10000 BC to 1990 AD were analyzed using the latest global geomagnetic models CALS10K.1b, CALS3K.4, and IGRF11. Moreover, for field sources, we investigated 2n (n = 2­­­­­­–10) pole ND fields and their energies. The results suggest that the study period can be divided into three. The intensity of the ND field has been mainly positive since 10000 BC and lasted almost 7500 years, then gradually decreased to negative in 2500 BC to 1500 AD, and finally sharply increased to positive. The anomaly areas of the ND field in East Asia took shape for n = 3, when the anomaly areas in East Asia were shaped into closed circles in the mainland. This suggests that the first three harmonic degrees account for most of the ND field. The energy of the ND field rapidly attenuates at the core–mantle boundary and is stable at the surface.
Key wordsgeomagnetic field   nondipole   CALS10K.1b   IGRF11   
收稿日期: 2015-12-25;
基金资助:

本研究由国家自然科学基金(编号:41404053)和江苏省自然科学基金(编号:BK20140994)联合资助。

引用本文:   
. 千年尺度的中国大陆及邻近区域非偶极子磁场的时空变化研究[J]. 应用地球物理, 2017, 14(2): 314-321.
. Regional spatiotemporal variations of a nondipole magnetic field over the Chinese mainland and neighboring regions in millennial scale[J]. APPLIED GEOPHYSICS, 2017, 14(2): 314-321.
 
[1] Baag, C., and Helsley, C., 1974, Geomagneticsecular variation model: Journal of Geophysical Research, 79(32), 4918−4922.
[2] Bauer, L., and Hazard, D., 1900, The physical decomposition of the earth’s permanent magnetic field-No. 1. the assumed normal magnetization and the characteristics of the resulting residual field: Terrestrial Magnetism and Atmospheric Electricity,5(1), 1−4.
[3] Bloxham, J., and Gubbins, D., 1985, The secular variation of earth’s magnetic field: Nature, 317, 777−781.
[4] Bloxham, J., and Jackson, A., 1992, Time-dependent mapping of the magnetic field at the core-mantle boundary: Journal of Geophysical Research, 97(B13), 19537−19563.
[5] Constable, C., Johnson, C., and Lund, P., 2000, Global geomagnetic field models for the past 3000 years: transient or permanent flux lobes: Philosophical Transactions of The Royal Society A, 358(1768), 991−1008.
[6] Donadini, F., Korte, M., and Constable, C., 2009, Geomagnetic field for 0-3 ka: 1. New data sets for global modeling: Geochemistry Geophysics Geosystems, doi:10.1029/ 2008GC002295.
[7] Dumberry, M., and Bloxham, J., 2006, Azimuthal flows in the earth’s core and changes in length of day at millennial timescales: Geophysical Journal International, 165, 32-46.
[8] Dumberry, M., and Finlay, C., 2007, Eastward and westward drift of the earth’s magnetic field for the last three millennia: Earth and Planetary Science Letters, 254, 146-157.
[9] Feng, Y., Jiang, Y., and Sun, H., et al., 2014, A Study on variations of non-dipole magnetic field over Chinese mainland during 2000BC to 1990 AD: Science China (Earth Science), 57(6), 1229−1244.
[10] Finly, C., Maus, S., Beggan, C., et al., 2010, International geomagnetic reference field: the eleventh generation: Geophysical Journal International, 183(3), 1216-1230.
[11] Gallet, Y., Hulot, G., Chulliat, A., et al., 2009, Geomagnetic field hemispheric asymmetry and archeomagnetic jerks: Earth and Planetary Science Letters, 284, 179-186.
[12] Gubbins, D., 1975, Can the Earth’s magnetic field be sustained by core oscillations? Geophysical Research Letters, 2(9), 409−412.
[13] Gubbins, D., and Herrero-Bervera, E., 2007, Encyclopedia of geomagnetism and paleomagnetism: Springer, Netherlands.
[14] Hulot, G., Sabaka, T., and Olsen, N., 2007, Treatise on Geophysics, Geomagnetism. Amsterdam: Elsevier Ltd.
[15] Jackson, A., Jonkers, A., and Walker, M., 2000, Four centuries of geomagnetic secular variation from historical records: Philosophical Transactions of The Royal Society A, 358(1768), 957-990.
[16] Kang, G., Yu, H., and Zhang, Z., 1995, Change characteristics of geomagnetic the non-dipole field in east Asia: Journal of Yunnan University (in Chinese), 17(4), 358-368.
[17] Korhonen, K, Donadini F, and Riisager, P., 2008, Geomagia 50: An archeointensity database with PHP and MySQL. Geochem Geophys Geosys, 9, 9Q04029, doi: 10.1029/2007GC001893.
[18] Korte, M., and Constable, C., 2003, Continuous global geomagnetic field models for the past 3000 years. Physics of the Earth and Planetary Interiors, 140(1-3), 73-89.
[19] Korte, M., and Constable, C., 2005, Continuous geomagnetic field models for the past 7 millennia: CALS7K. 2: Geochemistry Geophysics Geosystems, doi: 10.1029/2004GC000801.
[20] Korte, M., and Constable, C., 2011, Improving geomagnetic field reconstructions for 0-3 ka: Physics of the Earth and Planetary Interiors, 188(3-4), 247-259.
[21] Korte, M., Constable, C., Donadini, F., and Holme, R., 2011, Reconstructing the holocene geomagnetic field: Earth and Planetary Science Letters, 312(3-4), 497-505.
[22] Langel, R., Sabaka, T., Baldwin, R., et al., 1996, The near Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled: Physics of the Earth and Planetary Interiors, 98(3-4), 235-267.
[23] Lin, Y., Zeng, X., and Guo, Q., 1985, Analysis of secular variation of non-dipole geomagnetic field in eastAsia. Chinese Journal of Geophysics (in Chinese), 28(5), 482-496.
[24] Olsen, N., Hulot, G., Lesur, V., et al., 2015, The Swarm Initial Field Model for the 2014 geomagnetic field: Geophysical Research Letters, 42, DOI 10.1002/2014 GL062659.
[25] Olsen, N., Luhr, H., Sabaka, T., et al., 2006, CHAOS—a model of Earth’s magnetic field derived from CHAMP, Oersted, and SAC-C magnetic satellite data: Geophysical Journal International, 166(1), 67-75.
[26] Olsen, N., and Mandea, M., 2008, Rapidly changing flows in the Earth’s core: Nature geosciences, 1, 390-394.
[27] Olsen, N., Mandea, M., Sabaka, T. J., et al., 2009, CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data: Geophysical Journal International, 179(3),1477-1487.
[28] Olsen, N., Mandea, M., Sabaka, T., et al., 2010, The CHAOS-3 geomagnetic field model and candidates for IGRF-2010: Earth Planets Space, 62, 719-727.
[29] Sabaka, T., Olsen, N., and Langel, R., 2002, A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3: Geophysical Journal International, 151(1), 32-68.
[30] Sabaka, T., Olsen, N., and Purucker, M., 2004, Extending comprehensive models of the earth’s magnetic field with Oersted and CHAMP data: Geophysical Journal International, 159(2), 521-547.
[31] Sabaka, T., Olsen, N., Robert H., et al., 2015. CM5, a pre-Swarm comprehensive geomagnetic field model derived from over 12 yr of CHAMP, Ørsted, SAC-C and observatory data: Geophysical Journal International, 200, 1596-1626.
[32] Walker, A., and Backus, G., 1997, A six-parameter statistical model of the earth’s magnetic field: Geophysical Journal International, 130(3), 693-700.
[33] Wardinski, I., and Korte, M., 2008, The evolution of the core-surface flow and changes in the length of day over the last seven thousand years: Journal of Geophysical Research, doi:10.1029/2007JB005024.
[34] Xu, W., 2003, Geomagnetism. Beijing: Earthquake press.
[35] Yukutake, T., and Tachinake, H., 1969, The non dipole part of the earth’s magnetic field into drifting and standing parts: Bull. Earthquake Res. Inst., 47, 65-79.
[1] 冯彦,姜云杉,顾嘉琳,徐凡,姜乙,刘爽. 基于协方差矩阵的地磁场急变特征提取研究[J]. 应用地球物理, 2019, 16(2): 154-160.
[2] 冯彦, 孙涵, 蒋勇. 基于数据拟合的区域地磁场建模研究[J]. 应用地球物理, 2015, 12(3): 303-316.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司