APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2016, Vol. 13 Issue (1): 127-134    DOI: 10.1007/s11770-016-0545-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法
甘叔玮1,王守东1,陈阳康2,陈江龙1,钟巍1,张成林3
1. 中国石油大学-北京,北京 102200
2. 美国德克萨斯大学奥斯汀分校,奥斯汀 美国
3. 中国石油西南油气田分公司勘探开发研究院,成都 610051
Improved random noise attenuation using f–x empirical mode decomposition and local similarity
Gan Shu-Wei1, Wang Shou-Dong1, Chen Yang-Kang2, Chen Jiang-Long1, Zhong Wei1, and Zhang Cheng-Lin1
1. China University of Petroleum (Beijing), Beijing 102200, China.
2. The University of Texas at Austin, Austin TX, USA.
3. Research Institute of West-South Oil Company, PetroChina, Chengdu 610051, China.
 全文: PDF (1319 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的f − x域经验模态分解法(Empirical mode decomposition,EMD)能够有效地对主要由水平同相轴构成的地震记录进行随机噪声衰减。然而,当同相轴倾斜时,f − x域经验模态分解法在衰减随机噪声的同时去除大部分有效信号。本文提出了一种基于f − x域经验模态分解法的改进算法。我们通过局部相似度对所去除的噪声信号中的有效信号进行提取。局部相似度可以用来检测噪声信号中的有效信号点并用来构造一权重算子进行信号提取。新方法与f − x域经验模态分解法、f − x域预测滤波法以及f − x域经验模态分解预测滤波法相比能够在衰减随机噪声的同时保留更多的有用信号。数值模拟实验以及实际地震资料处理结果均表明该方法能更为有效地去噪。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘叔玮
王守东
陈阳康
陈江龙
钟巍
张成林
关键词随机噪声衰减   f &minus   x域经验模态分解   局部相似度权重算子   倾斜同相轴。     
Abstract: Conventional f–x empirical mode decomposition (EMD) is an effective random noise attenuation method for use with seismic profiles mainly containing horizontal events. However, when a seismic event is not horizontal, the use of f–x EMD is harmful to most useful signals. Based on the framework of f–x EMD, this study proposes an improved denoising approach that retrieves lost useful signals by detecting effective signal points in a noise section using local similarity and then designing a weighting operator for retrieving signals. Compared with conventional f–x EMD, f–x predictive filtering, and f–x empirical mode decomposition predictive filtering, the new approach can preserve more useful signals and obtain a relatively cleaner denoised image. Synthetic and field data examples are shown as test performances of the proposed approach, thereby verifying the effectiveness of this method.
Key wordsRandom noise attenuation   f–x empirical mode decomposition   local similarity   dipping event   
收稿日期: 2015-02-12;
基金资助:

本研究由国家自然科学项目基金(编号:41274137)和中海油国家工程实验室联合资助。

引用本文:   
甘叔玮,王守东,陈阳康等. 基于相似度权重算子和f − x域经验模态分解的随机噪声衰减方法[J]. 应用地球物理, 2016, 13(1): 127-134.
Gan Shu-Wei,Wang Shou-Dong,Chen Yang-Kang et al. Improved random noise attenuation using f–x empirical mode decomposition and local similarity[J]. APPLIED GEOPHYSICS, 2016, 13(1): 127-134.
 
[1] Bekara, M. and van der Baan M., 2009, Random and coherent noise attenuation by empirical mode decomposition: Geophysics, 74(5), V89-V98.
[2] Chen, W., Wang, S., Zhang, Z., and Chuai, X., 2012, Noise reduction based on wavelet threshold filtering and ensemble empirical mode decomposition: 82nd Annual International Meeting, SEG, Expanded Abstracts, 1-6.
[3] Chen, Y., 2014, Deblending using a space-varying median filter: Exploration Geophysics, 82−87.
[4] Chen, Y., Fomel, S., and Hu, J., 2014a, Iterative deblending of simultaneous-source seismic data using seislet-domain shaping regularization: Geophysics, 79(5), V179-V189.
[5] Chen, Y., Gan, S., Liu, T., Yuan, J., Zhang, Y., and Jin, Z., 2015, Random noise attenuation by a selective hybrid approach using f-x empirical mode decomposition: Journal of Geophysics and Engineering, 12, 12-25.
[6] Chen, Y. and Ma, J., 2014, Random noise attenuation by f−x empirical mode decomposition predictive filtering: Geophysics, 79(3), V81-V91.
[7] Chen, Y., Yuan, J., Jin, Z., Chen, K., and Zhang, L., 2014b, Deblending using normal moveout and median filtering in common-midpoint gathers: Journal of Geophysics and Engineering, 11(4), 045012.
[8] Chen, Y., Zhou, C., Yuan, J., and Jin, Z., 2014c, Application of empirical mode decomposition to random noise attenuation of seismic data: Journal of Seismic Exploration, 23(6), 481-495.
[9] Dong, L., Li, Z., and Wang, D., 2013, Curvelet threshold denoising joint withempirical mode decomposition: 83rdAnnual International Meeting, SEG, Expanded Abstracts, 4412-4416.
[10] Fomel, S., 2007a, Local seismic attributes: Geophysics, 72(3), A29-A33.
[11] Fomel, S., 2007b, Shaping regularization in geophysical-estimation problems: Geophysics, 72(2), R29-R36.
[12] Fomel, S., and Jin, L., 2009, Time-lapse image registration using the localattributes: Geophysics, 74(2), A7-A11.
[13] Liu,G., Fomel, S., and Chen, X., 2011, Time-frequency analysis of seismic data using local attributes: Geophysics, 76(6), P23-P34.
[14] Qu, S., Zhou, H., Chen, Y., Yu, S., Yuan, J., Wang, Y., and Qin, M., 2015, An effective method of reducing harmonic distortion in correlated vibroseis data: Journal of Applied Geophysics, 115, 120-128.
[15] Yang, W., Wang, R., Chen, Y., Wu, J., Qu, S., Yuan, J., and Gan, S., 2015, Application of spectral decomposition using regularized non-stationary autoregression to random noise attenuation: Journal of Geophysics and Engineering, 12(2), 175-187.
[16] Zhang, R., Song, X., Fomel, S., Sen, M. K., and Srinivasan, S., 2013, Time-lapse seismic data registration and inversion for CO2 sequestration study at Cranfield: Geophysics, 78(6), B329-B338.
[1] 马彦彦, 李国发, 王峣钧, 周辉, 张保江. F-X域复数经验模态分解去噪方法[J]. 应用地球物理, 2015, 12(1): 47-54.
[2] 刘财, 陈常乐, 王典, 刘洋, 王世煜, 张亮. 基于二维希尔伯特变换的地震倾角求取方法及其在随机噪声衰减中的应用[J]. 应用地球物理, 2015, 12(1): 55-63.
[3] 王德利, 仝中飞, 唐晨, 朱恒. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理, 2010, 7(4): 315-324.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司