APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 615-625    DOI: 10.1007/s11770-015-0514-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
随机等效介质探地雷达参数递推阻抗反演研究
曾昭发1,陈雄1,李静1,2,陈玲娜1,鹿琪1,刘凤山2
1. 吉林大学地球探测科学与技术学院,长春 130026
2. 美国特拉华州立大学应用数学研究中心,多佛 19901
Recursive impedance inversion of ground-penetrating radar data in stochastic media
Zeng Zhao-Fa1, Chen Xiong1, Li Jing1,2, Chen Ling-Na1, Lu Qi1, and Liu Feng-Shan2
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Applied Mathematics Research Center, Delaware State University, Dover, DE 19901, USA.
 全文: PDF (1434 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 描述和估计介质含水量、介电常数等属性参数分布是探地雷达探测技术的重要研究内容。雷达波的旅行时间和反射振幅系数与介质含水量、孔隙度与介电常数密切相关。常规通过旅行时间计算波速以估计介质参数的方法,例如透射波法,共中心点速度分析等,对于复杂介质分辨率有限。基于反射振幅的阻抗反演方法可以直接根据反射系数计算雷达波阻抗以估计介质属性参数,从而有效地避开常规方法在计算波速时精度低的问题。本文首先建立了基于高斯型和指数型混合自相关函数的三维多尺度等效随机介质模型刻画地下随机介质参数分布,并在局部加入高斯椭圆方程描述局部随机异常目标体。其次,通过引入锥形函数以降低随机介质模型在离散网格数值计算方法误差。在此基础上,推导了探地雷达递推阻抗反演的基本流程并结合随机介质模型测试了该方法在复杂介质参数估计中的计算精度。最后,对内蒙地区的实测探地雷达数据利用递推阻抗反演方法来估计地下污染物参数,估计介电常数、含水量结果与钻孔实测数据和同期开展的电阻率成像结果有很好的吻合。说明基于递推阻抗反演方法在探地雷达复杂介质属性参数估计中具有很好的应用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾昭发
陈雄
李静
陈玲娜
鹿琪
刘凤山
关键词探地雷达   阻抗反演   随机介质模型   锥形函数     
Abstract: The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.
Key wordsGround-penetrating radar   impedance inversion   tapering function   stochastic medium   
收稿日期: 2015-01-12;
基金资助:

本研究由教育部博士点基金项目(编号:20130061110060博导类)、博士后基金项目(编号:2015M571366)和国家自然科学基金项目(编号:41174097)联合资助,也得到了美国DoD项目“先进数学算法中心”(编号:Center for Advanced Algorithms)和ARO(编号:W911NF-11-2-0046)项目支持。

引用本文:   
曾昭发,陈雄,李静等. 随机等效介质探地雷达参数递推阻抗反演研究[J]. 应用地球物理, 2015, 12(4): 615-625.
Zeng Zhao-Fa,Chen Xiong,Li Jing et al. Recursive impedance inversion of ground-penetrating radar data in stochastic media[J]. APPLIED GEOPHYSICS, 2015, 12(4): 615-625.
 
[1] Alshuhail, A., Lawton, D., and Isaac, H., 2009, Acoustic impedance inversion of vintage seismic data over a proposed CO2 sequestration site in the Lake Wabamun Area: CREWES Research Report, 21, 1−20.
[2] Annan, A. P., 2005, The principals of ground penetrating radar in near-surface geophysics: SEG-Investigations in Geophysics, 13, 357−438.
[3] Babcock, E., and Bradford, J. H., 2015, Reflection waveform inversion of ground-penetrating radar data for characterizing thin and ultrathin layers of non-aqueous phase liquid contaminants in stratified media: Geophysics, 80(2), H1−H11.
[4] Cooke, D. A., and Schneider, W. A., 1983, Generalized linear inversion of reflection seismic data: Geophysics, 48(6), 665−676.
[5] Daniels, D. J., 2004, Ground Penetrating Radar: Institution of Electrical Engineers, London.
[6] Farfour, M., Yoon, W. J., and Kim, J., 2015, Seismic attributes and acoustic impedance inversion in interpretation of complex hydrocarbon reservoirs: Journal of Applied Geophysics, 114, 68−80.
[7] Ferguson, R. J., and Margrave, G. F., 1996, A simple algorithm for band-limited impedance inversion: CREWES Research Report, 8, (21−1)−(21−10).
[8] Frankel, A., and Clayton, R. W., 1984, A finite difference simulation of wave propagation in two-dimensional random media: Bulletin of the Seismological Society of America, 74(6), 2167−2186.
[9] Guo, N. C., Wang, S. X., and Dong, C. H., 2012, Description of small scale inhomegeneities in seismic prospecting and long-wavelength theory: Chinese Journal Geophysics (in Chinese), 55(7), 2385−2401.
[10] Ikelle, L. T., Yung, S. K., and Daube, F., 1993, 2-D random media with ellipsoidal autocorrelation function: Geophysics, 58(9), 1359−1372.
[11] Jiang, Z. M., Zeng, Z. F., and Li, J., 2013, Simulation and analysis of GPR signal based on stochastic media model with an ellipsoidal autocorrelation function: Journal of Applied Geophysics, 99(1), 91−97.
[12] Klotzsche, A., Kruk, J. V. D., Bradfor, J., and Vereecken, H., 2014, Detection of spatially limited high-porosity layers using crosshole GPR signal analysis and full-waveform inversion: Water Resources Research, 50(8), 6966−6985.
[13] Kowalsky, M. B., Finsterle, S., and Peterson, J., 2005, Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data: Water Resources Research, 41(11), 1−17.
[14] Li, J., Zeng, Z. F., and Slob, E., 2014, Simulation of GPR passive interferometry using cross-correlation for LNAPL model monitoring application: Geophysics Journal International, 199(3), 1919−1928.
[15] Li, J., 2014, Ground penetrating radar detection and parameter inversion in stochastic effective medium: Doctor’s thesis, Jilin University.
[16] Lu, Q., and Sato, M., 2005, Application of electromagnetic exploration techniques to oil contaminated soil: Geophysical Exploration, 58(5), 545−554.
[17] Marple, S. L., 1987, Digital spectral analysis with applications: Prentice-Hall, New Jersey.
[18] Miao, G. W., Liu, C., and Wang, D., 2011, The application of impedance inversion for characteristics analysis and reservoir prediction in Jilin coalfield: Progress in Geophysics (in Chinese), 26(5), 1788−1795.
[19] Russell, B. H., 1988, Introduction to seismic inversion methods: Society of Exploration Geophysicists. Tulsa, Oklahoma.
[20] Sato, M., Lu, Q., 2005, Evaluation of soil and ground water contamination by GPR: (In Japanese), Butsuri-Tansa, 58, 511−519.
[21] Schmelzbach, C., Tronicke, J., and Dietrich, P., 2012, High-resolution water content estimation from surface-based ground-penetrating radar reflection data by impedance inversion: Water Resources Research, 48(8), 64−69.
[22] Tronicke, J., Tweeton, D. R., and Dietrich, P., 2001, Improved cross-hole radar tomography by using direct and reflected arrival times: Journal of Applied Geophysics, 47(2), 97−105.
[23] Turesson, A., 2006, Water content and porosity estimated from ground-penetrating radar and resistivity: Journal of Applied Geophysics, 58(02), 99−111.
[24] Wu, F. S., 2009, Study of ground penetrating radar (GPR) method in concrete detection application: Doctor’s thesis, Jilin University.
[25] Xi, X., and Yao, Y., 2002, Simulations of random medium model and intermixed random medium. Earth Science- Journal of China University of Geosciences (in Chinese). 27(1), 67−71.
[26] Xi, X., and Yao, Y., 2005, The wave field characteristics in 2-D elastic random media: Progress in Geophysics (in Chinese), 20(1), 147−154.
[27] Zeng, X. W., Zhang, G. Y., and Wang, X. M., 2004, Modeling of rocks with spatial distributed fractures by random medium theory: Applied Geophysics, 1(1), 50−55.
[1] 赵文轲, 田钢, 王帮兵, 石战结, 林金鑫. 探地雷达三维属性技术在考古调查中的应用研究[J]. 应用地球物理, 2012, 9(3): 261-269.
[2] 王静, 刘洋, 孙哲, 田洪, 苏华, 赵前华, 刘颖宇. 零偏VSP资料波阻抗反演方法研究[J]. 应用地球物理, 2009, 6(2): 150-158.
[3] 曾昭发, 吴丰收, 黄玲, 刘凤山, 孙继广. 应用改进Chirplet变换进行探地雷达数据处理和目标探测[J]. 应用地球物理, 2009, 6(2): 192-200.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司