APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2015, Vol. 12 Issue (4): 473-481    DOI: 10.1007/s11770-015-0522-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |  Next Articles  
远探测声反射波测井裂缝识别条件分析
张宫1,2,李宁1,3,郭宏伟1,武宏亮1,罗超1
1. 中国石油勘探开发研究院,北京 100083
2. 北京大学地球与空间科学学院,北京 100871
3. 长江大学,湖北武汉 430100
Fracture identification based on remote detection acoustic reflection logging
Zhang Gong1,2, Li Ning1,3, Guo Hong-Wei1, Wu Hong-Liang1, and Luo Chao1
1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China.
2. School of Earth and Space Sciences, Peking University, Beijing 100871, China.
3. Yangtze University, Wuhan, Hubei 430100, China.
 全文: PDF (1088 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 裂缝识别对碳酸盐岩储层测井评价至关重要,传统的测井仪器由于探测深度浅(小于3米)而无法对井壁外围(大于3米)裂缝发育情况进行评价,远探测声波测井仪器采用相控阵发射、同时加大源距,有效提升了测井仪器的探测深度。但由于缺少正演模拟研究,目前对于裂缝的解释往往是基于经验而缺乏理论依据,导致很多现象难以解释。本文利用高阶有限差分方法对远探测声反射波测井裂缝识别进行了正演模拟及叠前逆时偏移成像研究,首先在理论研究的基础上构建正演模型,重点研究不同裂缝离井壁距离、裂缝张开度和倾角的响应特征;其次在单因素变化基础上提取成像区域的能量强度,分析确定出在实际地层速度有波动变化时远探测声反射波测井方法能够识别裂缝的条件;最后通过对裂缝识别的影响因素定量化分析,确定裂缝识别的最大距离、最小张开度和最小倾角,降低了裂缝识别与评价中的多解性。研究成果对远探测声反射波测井仪器的发展、数据处理方法的改进,以及后续的测井解释工作都有一定的借鉴意义。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宫
李宁
郭宏伟
武宏亮
罗超
关键词远探测声波   逆时偏移   高阶有限差分   波动方程   反射波成像     
Abstract: Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture–borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture–borehole distance, fracture aperture, and dip angle on fracture identification.
Key wordsremote detection   acoustic wave   reverse-time migration   finite difference   wave equation   reflection wave imaging   
收稿日期: 2015-07-13;
基金资助:

本研究由国家油气重大专项(编号:2011ZX05020-008)资助。

引用本文:   
张宫,李宁,郭宏伟等. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
Zhang Gong,Li Ning,Guo Hong-Wei et al. Fracture identification based on remote detection acoustic reflection logging[J]. APPLIED GEOPHYSICS, 2015, 12(4): 473-481.
 
[1] Baysal, E., Dan, D. K., and Sherwood, J. W. C., 1983, Reverse time migration: Geophysics, 48(11), 1514−1524.
[2] Baysal, E., Kosloff, D. D., and Sherwood, J. W. C., 1994, A two-way nonreflecting wave equation: Geophysics, 49(2), 132−141.
[3] Berenger, J., P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics, 114(2), 185−200.
[4] Chabot, L., Henley, D. C., and Brown, R. J., et al., 2001, Single-well imaging using the full waveform of an acoustic sonic: 71th Annual International Meeting, SEG, Expanded Abstracts, 20(1), 420−423.
[5] Chabot, L., Henley, D. C., and Brown, R. J., et al., 2002, Single-well seismic imaging using full waveform sonic data, An update: 72th Annual International Meeting, SEG, Expanded Abstracts, 21(1), 368−371.
[6] Chai, X. Y., Zhang, W. R., and Wang, G. Q., et al., 2009, Application of remote exploration acoustic reflection imaging logging technique in fractured reservoir: Well Logging Technology (in Chinese), 33(6), 539−543.
[7] Chang, W. F., and Mcmechan, G. A., 1986, Reverse time migration of offset vertical seismic profiling data using the excitation time imaging condition: Geophysics, 51(1), 67−84.
[8] Chang, W. F., and Mcmechan, G. A., 1987, Elastic reverse time migration: Geophysics, 52(10), 1365−1375.
[9] Chang, W. F., and Mcmechan, G. A., 1990, 3-D acoustic prestack reverse time migration: Geophysical Prospecting, 38(7), 737−755.
[10] Chang, W. F., and Mcmechan, G. A., 1994, 3-D elastic prestack reverse time depth migration: Geophysics, 1994, 59(4), 597−609.
[11] Chattopadhyay, S., and Mcmechan, G. A., 2008, Imaging conditions for prestack reverse time migration: Geophysics, 73(3), S81−S89.
[12] Che, X. H., and Qiao, W. X., 2003, The equivalent phased receiver array and its application in processing of acoustic logging waveforms: Well Logging Technology (in Chinese), 27(1), 23−26.
[13] Gong, H., He, X., Chen, H., and Wang, X. M., 2015, Eliminating the azimuth ambiguity in single-well imaging using 3C sonic data: Geophysics, 80(1), A13−A17.
[14] Guo, S. J., Li, Z. C., Sun, X. D., et al., 2008, Post-stack reverse time migration using a finite difference method based on triangular grids: Applied Geophysics, 5(2), 115−120.
[15] Guo, Z. B., and Li, Z. C., 2014, True-amplitude imaging based on least-squares reverse time migration: Oil Geophysical Prospecting (in Chinese), 49(1), 120.
[16] minus;He, F. J., 2005, The study on the simulation of the borehole acoustic reflection imaging logging tool and it’s waveform processing method: PhD thesis, China University of Petroleum.
[17] Hemon, C., 1978, Equations d’onde et modeles: Geophysical Prospecting, 26(4), 790−821.
[18] Hornby, B. E., 1989, Imaging of near-borehole structure using full-waveform sonic data: Geophysics, 54(6), 747−757.
[19] Kang, W., and Cheng, J. B., 2012, Pseudo-acoustic wave equations for reverse-time migration in TI media: Chinese Journal Geophysics, 55(3), 1033−1045.
[20] Li, C., Yue, W., He, Y., and Guo, R., 2014, Elastic wave reverse time migration for directional dipole reflection imaging: 82th Annual International Meeting, SEG Expanded Abstracts 2014, 638−642.
[21] Li, C., Yue, W. Z., and Jin, H. L., et al., 2013, Progresses of data processing methods for acoustic reflection imaging logging: Well Logging Technology (in Chinese), 37(1),13−20.
[22] Li, N., Xiao, C. W., and Wu, L. H., et al., 2014, The innovation and development of log evaluation for complex carbonate reservoir in china: Well Logging Technology (in Chinese), 38(01), 1−10.
[23] Levin, S. A., 1984, Principles of reverse time migration: Geophysics, 49(5), 581−583.
[24] Levy, B. C., and Esmersoy, C., 1986, Variable background born inversion by wave field back propagation: Journal on Applied Mathematics, 48(4), 952−972.
[25] Kaelin, B., and Guitton, A., 2006, Imaging condition for reverse time migration: 76th Annual International Meeting, SEG, Expanded Abstracts, 25(1), 2594−2598.
[26] Mulder, W. A., and Plessix, R., 2003, One-way and two-way wave equation migration: 73th Annual International Meeting, SEG Expanded Abstracts 69(6), 2452.
[27] Sun, R., and McMechan, G. A., 1986, Prestack reverse time migration for elastic waves with application to synthetic offset vertical seismic profiles: Proceedings of the IEEE, 74(3), 457−465.
[28] Sun, R., and Wang, A., 2001,Scalar reverse time depth migration of elastic seismic data: Geophysics, 66(5), 1519−1527.
[29] Su, Y. D., Wei, Z. T., and Tang, X. M., 2014, Validation method of dipole acoustic reflection imaging from the adjacent borehole reflection: Applied Acoustics, 33(1), 29−34.
[30] Tang, X. M., and Patterson, D., 2009, Shear-wave imaging using cross-dipole acoustic logging tool: 79th Annual International Meeting, SEG Expanded Abstracts, 28(1), 421−425.
[31] Tang, X. M., Wei, Z., Su, Y. D., et al., 2013, A Review on the progress and application of dipole acoustic reflection imaging technology: Well Logging Technology (in Chinese), 37(4), 333−340.
[32] Tang, X. M., Zheng, Y., and Patterson, D., 2006, Processing acoustic logging data to image near-borehole geological structures: 76th Annual International Meeting, SEG, Expanded Abstracts, 25(1), 339−343.
[33] Wang, G. Q., Liu, J. D., and Wen, D. J., et al., 2014, Carbonate reservoir productivity forecasting technology based on distance detection acoustic logging tool: Well Logging Technology (in Chinese), 38(6),745−748.
[34] Wang, N. X., Su, H., and Liu, W. M., et al., 1998, Analysis of reflection image in sonic full waveform logging: Well Logging Technology (in Chinese), 25(1), 339−343.
[35] Wang, S. D., 2003, Absorbing boundary condition for acoustic wave equation by perfectly matched layer: Oil Geophysical Prospecting (in Chinese), 38(1), 31−34.
[36] Wei, Z. T., Tang, X. M., and Su, Y. D., et al., 2013, A new acoustic remote sensing method utilizing borehole low-frequency dipole shear wave: Geophysics (in Chinese), 56(10), 3572−3580.
[37] Wei, Z. T., Tang, X. M., and Zhuang, C. X., 2013, Far-detecting logging by oriented dipole P-wave in an acoustically slow formation. Acta Petrolei Sinica (in Chinese), 34(5), 905−913.
[38] Whitmore, N. D., 1983, Iterative depth imaging by backward time propagation: 58th Annual International Meeting, SEG, Expanded Abstracts, 2(5), 646.
[39] Xiao, C. W., Li, J. X., and Wu, X. N., et al., 2014, Split-step Fourier migration in remote exploration acoustic reflection imaging logging: Well Logging Technology (in Chinese), 38(2), 174−138.
[40] Yoon, K., Marfurt, K. J., Houston, U., et al., 2004, Challenges in reverse time migration: 74th Annual International Meeting, SEG, Expanded Abstracts, 1057−1060.
[41] Zhuang, C. X., Yan, F., and Sun, Z. F., et al., 2014, Data processing and applications of dipole shear-wave imaging logging: Well Logging Technology (in Chinese), 38(3), 330−336.
[42] Zhang, C. Y., Li, Z. C., and Sun, X. D., 2010, Review on the technology of reverse time migration: Progress of Exploration Geophysics, (05), 309−317.
[43] Zhu, J., and Lines, L., 1994, Imaging of complex subsurface structures by VSP migration: Canadian Journal of Exploration Geophysics, 30(1), 73−83.
[1] 刘国峰,孟小红,禹振江,刘定进. 多GPU TTI 介质逆时偏移*[J]. 应用地球物理, 2019, 16(1): 61-69.
[2] 薛浩,刘洋. 基于多方向波场分离的逆时偏移成像方法[J]. 应用地球物理, 2018, 15(2): 222-233.
[3] 孙小东,贾延睿,张敏,李庆洋,李振春. 伪深度域最小二乘逆时偏移方法及应用[J]. 应用地球物理, 2018, 15(2): 234-239.
[4] 杨佳佳,栾锡武,何兵寿,方刚,潘军,冉伟民,蒋陶. 基于矢量波场逆时偏移的保幅角道集提取方法[J]. 应用地球物理, 2017, 14(4): 492-504.
[5] 孙小东,李振春,贾延睿. 基于变网格的不同观测系统下的逆时偏移[J]. 应用地球物理, 2017, 14(4): 517-522.
[6] 孙小东,葛中慧,李振春. 基于共轭梯度法和互相关的最小二乘逆时偏移及应用[J]. 应用地球物理, 2017, 14(3): 381-386.
[7] 张建敏,何兵寿,唐怀谷. 三维TTI介质中的纯准P波方程及求解方法[J]. 应用地球物理, 2017, 14(1): 125-132.
[8] 孙小东,葛中慧,李振春,洪瑛. 黏声VTI介质逆时偏移成像稳定性研究[J]. 应用地球物理, 2016, 13(4): 608-613.
[9] 杨佳佳,栾锡武 ,方刚,刘欣欣,潘军,王小杰. 基于保幅波场分离的弹性波逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 500-510.
[10] 蔡晓慧, 刘洋, 任志明, 王建民, 陈志德, 陈可洋, 王成. 三维声波方程优化有限差分正演[J]. 应用地球物理, 2015, 12(3): 409-420.
[11] 杜启振, 张明强, 陈晓冉, 公绪飞, 郭成锋. 交错网格中基于波数域插值的波场分离方法研究[J]. 应用地球物理, 2014, 11(4): 437-446.
[12] 赵岩, 刘洋, 任志明. 基于优化时空域高阶有限差分方法的粘滞声波叠前逆时偏移[J]. 应用地球物理, 2014, 11(1): 50-62.
[13] 段玉婷, 胡天跃, 姚逢昌, 张研. 基于精细积分法的三维弹性波数值模拟[J]. 应用地球物理, 2013, 10(1): 71-78.
[14] 张生强, 韩立国, 刘春成, 张益明, 巩向博. 基于小生境遗传算法的双相裂隙介质储层参数反演[J]. 应用地球物理, 2012, 9(4): 440-450.
[15] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司