APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 500-507    DOI: 10.1007/s11770-014-0455-z
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
激发极化法2.5维自适应有限元正演模拟
叶益信1,2,3,李予国1,邓居智2,李泽林2
1. 中国海洋大学海底科学与探测技术教育部重点实验室,青岛 266100
2. 东华理工大学放射性地质与勘探国防重点学科实验室,南昌 330013
3. 中国地质大学(武汉)地球内部多尺度成像湖北省重点实验室,武汉 430074
2.5D induced polarization forward modeling using the adaptive finite-element method
Ye Yi-Xin1,2,3, Li Yu-Guo1, Deng Ju-Zhi2, and Li Ze-Lin2

1. Key Lab of Submarine Geosciences and Prospecting Techniques of Ministry of Education, Ocean University of China, Qingdao 266100, China.
2. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China Institute of Technology, Nanchang 330013, China.
3. Hubei Subsurface Multi-scale Imaging Lab (SMIL), China University of Geosciences (Wuhan), Wuhan 430074, China.

 全文: PDF (692 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 传统的有限元法通常采用结构化网格如矩形等,且网格剖分和加密要靠手动实现,所以传统的基于结构化网格有限元法不能十分准确和灵活地模拟复杂介质。本文采用易于模拟复杂介质模型的非结构化三角形网格进行剖分,且利用对偶加权后验误差估计指导网格自动细化过程,然后在最终细化网格的基础上计算雅可比偏导矩阵,并由雅可比偏导矩阵计算激发极化响应,实现激发极化法2.5维自适应有限元正演模拟算法。通过对垂直接触面模型进行正演分析,接收点附近网格得到了明显加密,电位数值解平均相对误差收敛到0.4%,视极化率平均相对误差收敛到1.2%,表明经自适应网格细化后,该算法数值解最终能收敛到精确解附近。最后对两个较复杂模型进行了正演计算与分析,进一步验证了该算法的准确性和灵活性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶益信
李予国
邓居智
李泽林
关键词激发极化   对偶加权误差估计   非结构化网格   自适应   有限元     
Abstract: The conventional finite-element (FE) method often uses a structured mesh, which is designed according to the user’s experience, and it is not sufficiently accurate and flexible to accommodate complex structures such as dipping interfaces and rough topography. We present an adaptive FE method for 2.5D forward modeling of induced polarization (IP). In the presented method, an unstructured triangulation mesh that allows for local mesh refinement and flexible description of arbitrary model geometries is used. Furthermore, the mesh refinement process is guided by dual error estimate weighting to bias the refinement towards elements that affect the solution at the receiver locations. After the final mesh is generated, the Jacobian matrix is used to obtain the IP response on 2D structure models. We validate the adaptive FE algorithm using a vertical contact model. The validation shows that the elements near the receivers are highly refined and the average relative error of the potentials converges to 0.4 % and 1.2 % for the IP response. This suggests that the numerical solution of the adaptive FE algorithm converges to an accurate solution with the refined mesh. Finally, the accuracy and flexibility of the adaptive FE procedure are also validated using more complex models.
Key wordsInduced polarization (IP)   dual error estimate weighting   unstructured mesh   adaptive   finite-element (FE)   
收稿日期: 2013-05-05;
基金资助:

本研究由国家自然科学基金(编号:41204055、41164003和41104074)和中国地质大学(武汉)地球内部多尺度成像湖北省重点实验室开放基金项目(编号:SMIL-2014-06)联合资助。

引用本文:   
叶益信,李予国,邓居智等. 激发极化法2.5维自适应有限元正演模拟[J]. 应用地球物理, 2014, 11(4): 500-507.
YE Yi-Xin,LI Yu-Guo,DENG Ju-Zhi et al. 2.5D induced polarization forward modeling using the adaptive finite-element method[J]. APPLIED GEOPHYSICS, 2014, 11(4): 500-507.
 
[1] Babuska, I., Ihlenburg, F., Stroubousli, T., and Gangaraj, S., 1997, A posteriori error estimation for finite element solution of Helmholtz’ equation. II. Estimation of the pollution error: International Journal for Numerical Methods in Engineering, 41, 3883-3900.
[2] Bank, R. E., and Xu, J. C., 2003, Asymptotically exact a posteriori error estimators, Part II: General unstructured grids: SIAM Journal on Numerical Analysis, 41, 2313-2332.
[3] Coggon, J. H., 1971, Electromagnetic and electrical modeling by the finite element method: Geophysics, 36(2), 132-151.
[4] Franke, A., Borner, R. U., and Spitzer, K., 2007, Adaptive unstructured grid finite element simulation of two-dimensional magnetotelluric fields for arbitrary surface and seafloor topography: Geophys. J. Int., 171, 71-86.
[5] Huang, J. G., Ruan, B. Y., and Bao, G. S., 2003, Finite element method for IP modeling on 3-D geoelectric section: Earth Science-Journal of China University of Geosciences (in Chinese), 28(3), 323-326.
[6] Key, K., and Weiss, C., 2006, Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example: Geophysics, 71(6), G291-G299.
[7] Li, Y. G., and Key, K., 2007, 2D marine controlled-source electromagnetic modeling: Part 1-An adaptive finite-element algorithm: Geophysics, 72(2), WA51-WA62.
[8] Li, Y. G., and Spitzer, K., 2005, Finite-element resistivity modeling for 3D structures with arbitrary anisotropy: Physics of the Earth and Planetary Interiors, 150, 15-27.
[9] Oden, J., Feng, Y., and Prudhomme, S., 1998, Local and pollution error estimation for stokesian flows: International Journal for Numerical Methods in Fluids, 27, 33-39.
[10] Ovall, J, S., 2004, Duality-based adaptive refinement for elliptic: PD. University of California, San Diego.
[11] Ovall, J. S., 2006, Asymptotically exact functional error estimators based on super convergent gradient recovery: Numerical Mathematics, 102, 543-558.
[12] Ren, Z. Y., and Tang, J. T., 2014, A goal-oriented adaptive finite-element approach for multi-electrode resistivity system: Geophys. J. Int., 199(1), 136-145.
[13] Rijo, L., 1977, Modeling of electric and electromagnetic data: Ph. D. Dissertation, Univ. of Utah.
[14] Ruan, B. Y., and Xu, S. Z., 1998, FEM for modeling resistivity sounding on 2D geoelectric model with line variation of conductivity with in each block: Earth Science-Journal of China University of Geosciences (in Chinese), 23(3), 303-307.
[15] Ruan, B. Y., Yutaka, M., and Xu, S. Z., 1999, 2D inversion programs of induced polarization data : Computing Techniques for Geophysical and Geochemical Exploration (in Chinese), 21(2), 116-125.
[16] Sasaki, Y., 1982, Automatic interpretation of induced polarization data over two-dimensional structures: Memoirs of the Faculty of Engineering, Kyushu University, 42, 59-65.
[17] Shewchuk, J. R., 2002, Delaunay refinement algorithms for triangular mesh generation: Computational Geometry-Theory and Applications, 22, 21-74.
[18] Slater, L. D., and Lesmes, D., 2002, IP interpretation in environmental investigations: Geophysics, 67(1), 77-88.
[19] Tang, J. T., Wang, F. Y., and Ren, Z. Y., 2010, 2.5D DC resistivity modeling by adaptive finite element method with unstructured triangulation: Chinese J. Geophys. (in Chinese), 53(3), 708-716.
[20] Wu, X. P., and Wang, T. T., 2003, A 3-D finite element resistivity forward modeling using conjugate gradient algorithm: Chinese J. Geophys. (in Chinese), 46(3), 428-432.
[21] Xu, S. Z., 1994, The Finite Element Method in Geophysics (in Chinese): Beijing, Science Press, 178-188.
[22] Xu, S. Z., Liu, B., and Ruan, B. Y., 1994, The finite element method for solving anomalous potential for resistivity surveys: Chinese J. Geophys. (in Chinese), 37(S2), 511-515.
[23] Zhou, B. and Greenhalgh, S. A., 2001, Finite element three-dimensional direct current resistivity modeling: accuracy and efficiency considerations: Geophys. J. Int., 145, 679-688.
[24] Zienkiewicz, O. C., and Taylor, R. L., 2000, The finite-element method (5th edition), basic foundation: Butterworth-Heinemann.
[1] 康正明,柯式镇,李新,米金泰,倪卫宁,李铭宇. 随钻多模式电阻率成像测井仪响应的三维有限元数值模拟[J]. 应用地球物理, 2018, 15(3-4): 401-412.
[2] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[3] 周峰,汤井田,任政勇,张志勇,陈煌,皇祥宇,钟乙源. 基于有限元-积分方程的三维可控源电磁法混合正演模拟[J]. 应用地球物理, 2018, 15(3-4): 536-544.
[4] 徐凯军,孙洁. 基于自适应有限元的2.5D海洋可控源电磁场激电效应特征研究[J]. 应用地球物理, 2018, 15(2): 332-341.
[5] 张博,殷长春,刘云鹤,任秀艳,齐彦福,蔡晶. 双船拖曳式海洋电磁三维自适应正演模拟及响应特征研究[J]. 应用地球物理, 2018, 15(1): 11-25.
[6] 王兵,张阔,陶果,刘鹤,张晓亮. 基于混合PML的频域有限元声反射测井正演模拟[J]. 应用地球物理, 2018, 15(1): 35-45.
[7] 张代磊,黄大年,于平,袁园. 基于平移不变量小波的全张量重力梯度数据滤波[J]. 应用地球物理, 2017, 14(4): 606-619.
[8] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[9] 张阔,吴锡令,闫景富,蔡家铁. 水平井两相流动电磁全息测量敏感场[J]. 应用地球物理, 2017, 14(1): 40-48.
[10] 张文辉,符力耘,张艳,金维浚. 利用三维数字岩心计算龙马溪组页岩等效弹性参数[J]. 应用地球物理, 2016, 13(2): 364-374.
[11] 李文奔, 曾昭发, 李静, 陈雄, 王坤, 夏昭. 频率域航空电磁法2.5维正反演研究[J]. 应用地球物理, 2016, 13(1): 37-47.
[12] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[13] 尹成芳, 柯式镇, 许巍, 姜明, 张雷洁, 陶婕. 三维阵列侧向测井电极系设计及其响应模拟[J]. 应用地球物理, 2014, 11(2): 223-234.
[14] 何涛, 李洪林, 邹长春. BSR热流的三维地貌校正和流体汇聚探测[J]. 应用地球物理, 2014, 11(2): 197-206.
[15] 许巍, 柯式镇, 李安宗, 陈鹏, 朱军, 张维. 随钻双感应测井仪三维响应模拟及理论刻度[J]. 应用地球物理, 2014, 11(1): 31-40.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司