APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (4): 374-383    DOI: 10.1007/s11770-014-0462-0
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
孔隙结构对储层电性及测井解释评价的影响
边环玲1,2,3,关雎3,毛志强1,2,鞠晓东1,2,韩桂琴3
1. 中国石油大学地球物理与信息工程学院,北京 102249
2. 中国石油大学(北京)地球探测与信息技术重点实验室,北京 102249
3. 中国石油长城钻探工程有限公司解释研究中心,北京 100101
Pore structure effect on reservoir electrical properties and well logging evaluation
Bian Huan-Lin1,2,3, Guan Ju3, Mao Zhi-Qiang1,2, Ju Xiao-Dong1,2, and Han Gui-Qing3
1. College of Geophysics and Information Engineering, China University of Petroleum, Beijing 102249, China.
2. Key Laboratory of Earth Prospect and Information Technology, China University of Petroleum, Beijing 102249, China.
3. Geoscience Center of CNPC Great Wall Drilling Company, Beijing 100101, China.
 全文: PDF (1379 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在多个区块的测井评价工作发现,孔隙结构直接影响储集层的品质和油气层的电阻率,是测井准确评价流体性质的关键。岩石物理资料表明不同区块内影响储层孔隙结构的因素不同,但效果是一致的,即孔隙结构的复杂程度控制着储层的储集能力和渗透能力。孔隙结构的复杂程度影响了储层中导电流体的分布和含量,从而控制了储层的电阻率。储层出现低阻油气层的内因均为复杂的孔隙结构(骨架导电及工程原因除外)。测井储层评价在分析控制储层孔隙结构复杂程度的地质因素及储层分类的基础上,针对不同类型储层采用不同的模型、参数和标准,可以有效的认识储层品质和识别不同类型储层的流体性质。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
边环玲
关雎
毛志强
鞠晓东
韩桂琴
关键词孔隙结构   储层品质   电性   低阻油气层   测井评价     
Abstract: The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reservoir with different pore structure characteristics to show that the complexity of pore structure had a significant effect on the effective porosity and permeability regardless of geological factors responsible for the formation of pore structure. Moreover,, the distribution and content of conductive fluids in the reservoir varies dramatically owing to pore structure differences, which also induces resistivity variations in reservoir rocks. Hence, the origin of low-resistivity hydrocarbon-bearing zones, except for those with conductive matrix and mud filtrate invasion, is attributed to the complexity of the pore structures. Consequently, reservoir-specific evaluation models, parameters, and criteria should be chosen for resistivity log interpretation to make a reliable evaluation of reservoir quality and fluids.
Key wordspore structure   reservoir quality   resistivity   low-resistivity hydrocarbon-bearing zone   log evaluation   
收稿日期: 2013-12-14;
基金资助:

本研究由中国石油天然气集团公司科学研究与技术开发项目(编号:2011D_4101)资助。

引用本文:   
边环玲,关雎,毛志强等. 孔隙结构对储层电性及测井解释评价的影响[J]. 应用地球物理, 2014, 11(4): 374-383.
BIAN Huan-Ling,GUAN Ju,MAO Zhi-Qiang et al. Pore structure effect on reservoir electrical properties and well logging evaluation[J]. APPLIED GEOPHYSICS, 2014, 11(4): 374-383.
 
[1] Archie, G. E., 1942, The electrical resistivity log as an aid in determining some reservoir characteristics: Trans. AIME, 1942, 146. 54-62.
[2] Bassem, S. N., Géraud, Y., Rochette, P., et al., 2009, Pore-throat characterization in highly porous and permeable sandstones: AAPG Bulletin, 93(6), 719-739.
[3] Bian, H. L., Guan, J., and Han, G. Q., 2008, Research of logging interpretation and evaluation method in low resistivity oil and gas reservoir: Well Logging Technology, 32(3), 241-245.
[4] Chen, H., and Heidari, Z., 2014, Pore-scale evaluation of dielectric measurements in formations with complex pore and grain structures: 55th SPWLA Annual Logging Symposium, Abu Dhabi, Paper NNNN.
[5] Gao, C. Q., Mao, Z. Q., and Li, J. F., 1998, The electrical efficiency of rocks and its relationship with water saturation: Geophysical Prospecting for Petroleum, 37(3),130-136.
[6] Gunter, G. W., Spain, D. R., Viro, E. J., Thomas, J. B., Potter, G., and Winland, J. W., 2014, Pore throat prediction method-aproper retrospect: New examples from carbonates and complex systems: 55th SPWLA Annual Logging Symposium, Abu Dhabi, Paper, KKK.
[7] Holden, A., Lehmann, C., Ryder, K., Scott, B., and Almond, K., 2014, Integration of production logs helps to understand heterogeneity of MISHRIF reservoir in RUMAILA: 55th SPWLA Annual Logging Symposium, Abu Dhabi, Paper, GGG.
[8] Kumar, M., Sok, R., Knackstedt, M. A., Latham, S., Senden, T. J., Sheppard, A. P., Varslot, T., 2010, Mapping 3D Pore Scale Fluid Distributions: How Rock Resistivity is Influenced by Wettability and Saturation History: Petrophysics, 51(2),102-117.
[9] Li, C. L., and Li, C. X., 2010, Electrical property analysis on especially low-permeability clastic reservoir: Well logging Technology, 34(3), 233-237.
[10] Li, C. X., Tang, L. M., Hu, F. l., Zhou, C, C., Shi, Y. J., and Xiao, C. W., 2010, On the electrical property of low porosity and low permeability sandstone reservoirs with well developed secondary pore space: 51th SPWLA Annual Logging Symposium, Abu Dhabi, Paper, BBBB.
[11] Li, Q. S., Zhou, R. G., Zhang, J. G., Wu, H. N., and Li, X. S., 2002, Relations between Archie’s formula and Reservoir pore structure: Oil & Gas Geology, 23(4), 364-367.
[12] Liao, M. G., Su, C. H., Tang, H., Tan, D. H., Jiang, W., and Chen, X. Q., 2010, Geological genesis of low resistivity formation with thin sand-shale interlayer: XinJiang Petroleum Geology, 31(2), 154-157.
[13] Lonoy, A., 2006, Making sense of carbonate pore systems: AAPG Bulletin, 90(9),1381-1405.
[14] Lu, G. M., 2010, On the relationship between reservoir micro-pore and low resistivity reservoirs: Journal of Oil and Gas Technology, 32(6), 418-420.
[15] Ma, M. F., Li, W., and Liu, Y. C., 2005, Pore structure characteristics analysis of the oilfield in north Melut Basin, Sudan: Petroleum Exploration and Development, 32(6), 121-124.
[16] Mao, Z. Q., Zhang, Ch. G., Lin, Ch. Z., Ouyang, J., Wang, Q., and Yan, Ch. J., 1995, The effects of pore structure on electrical properties of cores samples from various sandstone reservoirs in tarim basin: 36th SPWLA Annual Logging Symposium, New Orleans, Paper LL.
[17] Ralf, J. W., Gregor, P. E., Gregor, T. B., Jose, L. M., and Sun, Y. F., 2009, Quantification of pore structure and its effect on sonic velocity and permeability in carbonates: AAPG Bulletin, 93(10), 1297-1317.
[18] Shi, J. Y., Li, G. R., and Zhou, J, X., 2008, Study on litho-electric character and saturation model of argillaceous low-permeability sandstone reservoir: Well Logging Technology, 32(3), 203-206.
[19] Shi, Y. J., Xiao, L., Mao, Z. Q., and Guo, H. P., 2011, An Identification method for diagenetic facies with well logs and its geological significance in low-permeability sandstones: A case study on Chang 8 reservoirs in the Jiyuan region, Ordos Basin: Acta Petrolei Sinica, 32(5), 820-828.
[20] Verwer, K., Eberli, G. P., and Weger, R. J., 2011, Effect of pore structure on electrical resistivity in carbonates: AAPG Bulletin, 95(2), 175-190.
[21] Wang, Q., Zhuo, X. Z., and Chen, G. J., 2005, Diagenetic evolution and high quality reservoir in Chang 6 sandstione in the western Ordos Basin: Acta Petrolei Sinica, 26(5), 17-23.
[22] Wang, X. M., Guo, Y. R., and Fu, J. H., 2005, Control factors for forming higher porosity and permeability sandstone reservoirs in Chang 8 member of Yanchang Formation, Ordos Basin: Petroleum Exploration & Development, 32(2), 35-38.
[23] Wang, Y. C., 1993, Petrophysics: Petroleum Industry Press, Beijing.
[24] Yu, H. Y., Li, H. Q., Guo, B., Sun, H. T., and Zhang, H.X., 2012, Low-Resistivity Oil Layers fine evaluation approaches based on mechanism: Journal of Jilin University (Earth Science Edition), 42(2), 335-343.
[25] Zhang, L. H., Zhou, C. C., Lou, G. Q., and Xiu, L. J., 2006, Influence of pore structures on electric properties and well logging evaluation in low porosity and permeability reservoirs: Petroleum Exploration and Development, 33(6), 671-676.
[26] Zhang, M. L., and Shi, J. Y., 2005, On Archie’s Parameters of sandstone reservoir with complicated pore structures: Well Logging Technology, 29(5), 446-448.
[27] Zhang, S. B., Wang, Q., and Li, X. Y., 2009, Depositional-diagenetic coupling complex of Xujiahe sandstone in Hebaochang Block in the south part of the Central Sichuan Basin: Acta Petrolei Sinica, 30(2), 225-231.
[28] Zhang, Z. H., Gao, C. H. Q., and Liu, J. J., 2011, The Genetic mechanism of Q4 low-resistivity reservoirs in the North of Honggang Area: Journal of Oil and Gas Technology, 33(11), 89-92.
[1] 马汝鹏,巴晶,Carcione J. M. ,周欣,李帆. 致密油岩石纵波频散及衰减特征研究:实验观测及理论模拟*[J]. 应用地球物理, 2019, 16(1): 36-49.
[2] 刘允隆,张元中,王拥军,王李庚. 川中侏罗系自流井组大安寨段致密灰岩孔隙结构实验研究[J]. 应用地球物理, 2018, 15(2): 165-174.
[3] 闫建平,何旭,耿斌,胡钦红,冯春珍,寇小攀,李兴文. 核磁共振T2谱多重分形特征及其在孔隙结构评价中的应用[J]. 应用地球物理, 2017, 14(2): 205-215.
[4] 李生杰, 邵雨, 陈旭强. 碳酸盐岩储层各向异性岩石物理建模与孔隙结构分析[J]. 应用地球物理, 2016, 13(1): 166-178.
[5] 潘建国, 王宏斌, 李闯, 赵建国. 孔隙结构对致密碳酸盐岩地震岩石物理特征的影响分析[J]. 应用地球物理, 2015, 12(1): 1-10.
[6] 陈向斌, 吕庆田, 严加永. 斑岩铜矿床及控矿构造的3D电性结构——以沙溪铜矿为例[J]. 应用地球物理, 2012, 9(3): 270-278.
[7] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[8] 李潮流, 周灿灿, 李霞, 胡法龙, 张莉, 王伟俊. 一种评价致密砂岩储层孔隙结构的新方法及其应用[J]. 应用地球物理, 2010, 7(3): 283-291.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司