APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2014, Vol. 11 Issue (2): 245-251    DOI: 10.1007/s11770-014-0434-4
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
大型复杂构造地震物理模型设计制作及实验精度分析
吴满生1,2,狄帮让1,2,魏建新1,2,梁向豪3,周翼3,刘依谋3,孔昭举4
1. 中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
2. 中国石油大学(北京)CNPC物探重点实验室,北京 102249
3. 中石油股份有限公司塔里木油田分公司勘探开发部,新疆库尔勒 841000
4. 东方地球物理公司研究院处理中心,河北保定 072750
Large-scale complex physical modeling and precision analysis
Wu Man-Sheng1,2, Di Bang-Rang1,2, Wei Jian-Xin1,2, Liang Xiang-Hao3, Zhou Yi3, Liu Yi-Mou3, and Kong Zhao-Ju4
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
2. CNPC Key Laboratory of Geophysical Prospecting, China University of Petroleum, Beijing 102249, China.
3. Department of Exploration and Production, Tarim Oilfield, PetroChina, Korla, Xingjiang 841000, China.
4. Processing Center, BGP, Baoding, Hebei 072750, China.
 全文: PDF (1159 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 大型、构造复杂的三维物理模型可用于模拟油气勘探。构造逼近实际地质状况的模拟具有制作技术难度大、质量控制严格等特点,可用于采集宽方位、多方位和全方位的地震数据,从而进行多种三维处理、解释方法验证。本文针对中国西部前陆盆地地表条件复杂地下构造复杂,导致成像不理想等问题,基于复杂的地下构造,设计制作了目前世界上模拟施工面积最大、构造最复杂的KS(塔里木盆地克深勘探工区)物理模型。本文的模型技术的进步主要涉及3个方面:模型的设计方法、模型的浇铸流程和数据采集,首次给出了物理模型的三维真实速度模型,定量分析了物理模型的制作精度,绝对误差小于3mm,可以满足方法试验的需要。该模型基于三维形态测量技术建立了三维真实速度模型,可作为方法试验的基础数据。因此,该模型可作为地震物理模拟技术的标准。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴满生
狄帮让
魏建新
梁向豪
周翼
刘依谋
孔昭举
关键词复杂构造   地震物理模拟   模型制作   采集     
Abstract: Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wide-azimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.
Key wordscomplex structure   seismic physical modeling   modeling construction   acquisition   
收稿日期: 2013-10-19;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05046-001)资助。

引用本文:   
吴满生,狄帮让,魏建新等. 大型复杂构造地震物理模型设计制作及实验精度分析[J]. 应用地球物理, 2014, 11(2): 245-251.
WU Man-Sheng,DI Bang-Rang,WEI Jian-Xin et al. Large-scale complex physical modeling and precision analysis[J]. APPLIED GEOPHYSICS, 2014, 11(2): 245-251.
 
[1] Arthur, J. M., Lawton, D. C., and Wong, J., 2012, Physical seismic modeling of a vertical fault: 82th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1-6.
[2] Blacquière, G., Volker, A., and Ongkiehong, L., 1999, 3-D physical modelling for acquisition geometry studies: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 665-668.
[3] Cheadle, S. P., Brown, R. J., and Lawton, D. C., 1991, Orthorhombic anisotropy: A physical seismic modeling study: Geophysics, 56(1), 1603-1613.
[4] Chen, G., 1996, Comparison of 2-D numerical viscoelastic waveform modeling with ultrasonic physical modeling: Geophysics, 61(3), 862-871.
[5] Cooper, J. K., Lawton, D. C., and Margrave, G. F., 2010, The wedge model revisited: A physical modeling experiment: Geophysics, 75(2), 15-21.
[6] Di, B. R., Sun, Z. X., Gu, P. C., Wei, J. X., and Xu, X. C., 2007, Analysis of influence of 3-D wide/narrow geometry on seismic imaging (1): Acquisition study based on seismic physical simulation: Oil Geophysical Prospecting, 42(1), 1-6.
[7] French, W. S., 1974, Two-dimensional and three-dimensional migration of model-experiment reflection profiles: Geophysics, 39(3), 265-277.
[8] Hilterman, F. J., 1970, Three-dimensional seismic modeling: Geophysics, 35(6), 1020-1037.
[9] Ladzekpo, D. H., Sekharan, K. K., and Gardner, H. F. G., 1988, Physical modeling for hydrocarbon exploration: 58th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 586-588.
[10] Lawton, D. C., Nazar, B., and Chen, T. W., 1991, Thin Channel Sandstones: A Physical Seismic Modeling Study: 61th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 669-672.
[11] Tadepall, h. V., Sekharan, K. K., and Ebrom, D. A., 1994, AVO studies of gas sands via physical modeling: 64th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1114-1116.
[12] Tatham, R. H., Matthews, M. D., Sekharan, K. K., Wade, C. J., and Liro, L. M., 1992, A physical model study of shear-wave splitting and fracture intensity: Geophysics, 57(4), 647-652.
[13] Wang, S. X., Li, X. Y., and Di, B. R., 2010, Reservoir fluid substitution effects on seismic profile interpretation: A physical modeling experiment: Geophysical Research Letters, 37(10), L10306.
[14] Wiley, R. W., Mcknight, R. S., and Sekharan, K. K., 1996, Salt canopy 3-D physical modeling project: The Leading Edge, 19, 1249-1251.
[1] 赵虎,徐浩,邸志欣,张金淼,刘志鹏. 采集参数对观测系统质量影响分析[J]. 应用地球物理, 2018, 15(3-4): 413-419.
[2] 高峰,魏建新,狄帮让. 地震物理模拟中Q值测量方法[J]. 应用地球物理, 2018, 15(1): 46-56.
[3] 赵虎,武泗海,杨晶,任达,徐维秀,刘迪鸥,朱鹏宇 . 基于模型的最优接收道数设计方法研究[J]. 应用地球物理, 2017, 14(1): 49-55.
[4] 陈波,贾晓峰,谢小碧. 基于染色算法的宽频带地震照明及分辨率分析[J]. 应用地球物理, 2016, 13(3): 480-490.
[5] 范景文,李振春,张凯,张敏,刘学通. 基于构造导向滤波的多震源最小二乘逆时偏移方法研究[J]. 应用地球物理, 2016, 13(3): 491-499.
[6] 陈凯, 魏文博, 邓明, 伍忠良, 余刚. 用于海底MT及海洋CSEM的海底电磁采集站[J]. 应用地球物理, 2015, 12(3): 317-326.
[7] 刘强, 韩立国, 陈竞一, 陈雪, 张显娜. 可变频震源混合采集数据波场分离研究[J]. 应用地球物理, 2015, 12(3): 327-333.
[8] 赵虎, 尹成, 何光明, 陈爱萍, 敬龙江. 基于CRP不规则二维地震采集方法研究[J]. 应用地球物理, 2015, 12(1): 73-78.
[9] 赵虎, 尹成, 侯朋军, 蒲龙川, 黄勇, 苑国辉. 一种针对目的层均匀成像的自动加密炮点方法[J]. 应用地球物理, 2013, 10(2): 222-228.
[10] 赵虎, 尹成, 吴明生, 吴晓华, 潘树林. 双复杂地区地震采集方法研究[J]. 应用地球物理, 2012, 9(3): 279-285.
[11] 周辉, 王尚旭, 李国发, 沈金松. 复杂构造地震波场分析[J]. 应用地球物理, 2010, 7(2): 185-192.
[12] 陶果, 张向林, 刘新茹, 陈少华, 刘统玉. 光纤Bragg光栅地震检波器的传感特性研究[J]. 应用地球物理, 2009, 6(1): 84-92.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司