APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (2): 134-140    DOI: 10.1007/s11770-011-0276-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
各向异性介质中频率相关横波分裂参数的提取算法
韩开锋1,曾新吾1
国防科技大学光电科学与工程学院,湖南长沙 410073
Algebraic processing technique for extracting frequencydependent shear-wave splitting parameters in an anisotropic medium
Han Kai-Feng1 and Zeng Xin-Wu1
 College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China.
 全文: PDF (630 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 基于曾新吾和MacBeth提出的时域内双源累积旋转方法,建立了频率相关介质中分析多分量VSP数据的横波分裂参数提取算法(DCTF)。该算法可以在频域中针对单个频率提取横波各向异性参数(快横波的极化方向以及快、慢横波间的时间差),从而避免了目前常用方法中使用窄带通滤波可能带来的误差。通过对地震合成记录的数值分析,确定了该算法的可行性和正确性,并与目前常用方法的应用结果进行了比较。结果显示,频率相关横波分裂参数可以利用DCTF从地震四分量数据中直接提取。在地震频率范围内,含较大尺度裂缝时各向异性参数将表现出频率相关性,这意味着在地震频率范围会出现频散。随着频率的增加,各向异性有降低的趋势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩开锋
曾新吾
关键词算法   各向异性   横波分裂   频率相关     
Abstract: Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth (1993), a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed. By using this dual source cumulative rotation technique in the frequency-domain (DCTF), anisotropic parameters, including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves, can be estimated for each frequency component in the frequency domain. It avoids the possible error which comes from using a narrow-band fi lter in the current commonly used method. By using synthetic seismograms, the feasibility and validity of the technique was tested and a comparison with the currently used method was also given. The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF. In the presence of larger scale fractures, substantial frequency dependence would be found in the seismic frequency range, which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.
Key wordsAlgebraic processing technique   anisotropy   shear-wave splitting   frequency dependence   
收稿日期: 2011-01-11;
基金资助:

国家自然科学基金(编号:41004055)资助。

引用本文:   
韩开锋,曾新吾. 各向异性介质中频率相关横波分裂参数的提取算法[J]. 应用地球物理, 2011, 8(2): 134-140.
HAN Kai-Feng,ZENG Xin-Wu. Algebraic processing technique for extracting frequencydependent shear-wave splitting parameters in an anisotropic medium[J]. APPLIED GEOPHYSICS, 2011, 8(2): 134-140.
 
[1] Zeng, X., and MacBeth, C., 1993, Algebraic processing techniques for estimating shear-wave splitting in zero-offset VSP data: theory: Geophysical Prospecting, 41(8), 1033 ? 1066.
[2] Alford, R. M., 1986, Shear data in the presence of azimuthal anisotropy: Expanded Abstracts of 56th SEG Mtg, 476 ? 479.
[3] Zeng, X., MacBeth, C., and Li, X. Y., 1997, Shear-wave VSP data processing for anisotropy: NUDT press, Changsha (China).
[4] Chapman, M., 2003, Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity: Geophysical Prospecting, 51, 369 ? 379.
[5] Crampin, S., 1985, Evaluation of anisotropy by shear-wave splitting: Geophysics, 50, 142 ? 152.
[6] Fryer, G. J., and Frazer, L. N., 1984, Seismic waves in stratified anisotropic media: Geophysical Journal of the Royal Astronomical Society, 78, 691 ? 710.
[7] Li, X. Y., 1997, Fractured reservoir delineation using multicomponent seismic data: Geophysical Prospecting, 45, 39 ? 64.
[8] Zhang, Z. J., Teng, J., Badal, J., and Liu, E., 2009, Construction of regional and local seismic anisotropic structures from wide-angle seismic data: crustal deformation in the southeast of China: Journal of Seismology, 13(2), 241 ? 252.
[9] Liu, E., Crampin, S., Queen, J. H., and Rizer, W. D., 1993, Velocity and attenuation anisotropy caused by microcracks and macrofractures in a multiazimuthal reverse VSP: Canadian Journal of Exploration Geophysics, 27, 177 ? 188.
[10] Maultzsch, S., Chapman, M., Liu, E. R., and Li, X. Y., 2003, Modeling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements: Geophysical Prospecting, 51, 381 ? 392.
[11] Queen, J. H., and Rizer, W. D., 1990, An integrated study of seismic anisotropy and the natural fracture system at the Conoco borehole test facility, Kay County, Oklahoma: Journal of Geophysical Research, 95, 255 ? 274.
[12] Tatham, R. B., and McCormack, M. D., 1991, Multicomponent seismology in petroleum exploration: In Neitzel, E. B., and Wintersteir, D. F., Eds., Investigations in Geophysics, No. 6, Soc. Explor. Geophus.
[13] Thomsen, L., 1995, Elastic anisotropy due to aligned cracks in porous rock: Geophysical Prospecting, 43, 805 ? 829.
[14] Winterstein, D. F., and Meadows, M. A., 1991, Shear-wave polarizations and subsurface stress directions at Lost Hills field: Geophysics, 56(9), 1331 ? 1348.
[15] 吴晶, 高原, 石玉涛, 赵霞, 李金良, 2010, 基于地壳介质各向异性分析江苏及邻区构造应力特征: 地球物理学报, 53(7), 1622 ? 1630.
[16] Zeng, X., and MacBeth, C., 1993, Algebraic processing techniques for estimating shear-wave splitting in zero-offset VSP data: theory: Geophysical Prospecting, 41(8), 1033 ? 1066.
[17] Zeng, X., MacBeth, C., and Li, X. Y., 1997, Shear-wave VSP data processing for anisotropy: NUDT press, Changsha (China).
[18] Zhang, Z. J., Teng, J., Badal, J., and Liu, E., 2009, Construction of regional and local seismic anisotropic structures from wide-angle seismic data: crustal deformation in the southeast of China: Journal of Seismology, 13(2), 241 ? 252.
[1] 谢玮,王彦春,刘学清,毕臣臣,张丰麒,方圆,Tahir Azeem. 基于改进的贝叶斯推断和最小二乘支持向量机的非线性多波联合AVO反演*[J]. 应用地球物理, 2019, 16(1): 70-82.
[2] 李昆,陈龙伟,陈轻蕊,戴世坤,张钱江,赵东东,凌嘉宣. 起伏面磁场及其梯度张量快速三维正演方法[J]. 应用地球物理, 2018, 15(3-4): 500-512.
[3] 周峰,汤井田,任政勇,张志勇,陈煌,皇祥宇,钟乙源. 基于有限元-积分方程的三维可控源电磁法混合正演模拟[J]. 应用地球物理, 2018, 15(3-4): 536-544.
[4] 刘炜,王彦春,李景叶,刘学清,谢玮. 基于矢量化反射率法的多波叠前联合AVA反演[J]. 应用地球物理, 2018, 15(3-4): 448-465.
[5] 王玲玲,魏建新,黄平,狄帮让,张福宏. 多尺度裂缝储层地震预测方法研究[J]. 应用地球物理, 2018, 15(2): 240-252.
[6] 郭桂红,闫建萍,张智,José Badal,程建武,石双虎,马亚维. 流体饱和孔隙定向裂缝储层中地震波衰减的模拟分析[J]. 应用地球物理, 2018, 15(2): 311-317.
[7] 闫丽丽,程冰洁,徐天吉,江莹莹,马昭军,唐建明. HTI介质PS波叠前偏移及各向异性校正方法应用研究[J]. 应用地球物理, 2018, 15(1): 57-68.
[8] 孙成禹,王妍妍,伍敦仕,秦效军. 基于洗牌蛙跳算法的瑞雷波非线性反演[J]. 应用地球物理, 2017, 14(4): 551-558.
[9] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[10] 钱恪然,何治亮,陈业全,刘喜武,李向阳. 各向异性富有机质页岩的岩石物理建模及脆性指数研究[J]. 应用地球物理, 2017, 14(4): 463-480.
[11] 黄威,贲放,殷长春,孟庆敏,李文杰,廖桂香,吴珊,西永在. 三维时间域航空电磁任意各向异性正演模拟[J]. 应用地球物理, 2017, 14(3): 431-440.
[12] 黄鑫,殷长春,曹晓月,刘云鹤,张博,蔡晶. 基于谱元法三维航空电磁电各向异性模拟及识别研究[J]. 应用地球物理, 2017, 14(3): 419-430.
[13] 苏本玉,岳建华. 煤层导水裂缝带电各向异性特征研究[J]. 应用地球物理, 2017, 14(2): 216-224.
[14] 方刚,巴晶,刘欣欣,祝堃,刘国昌. 基于时间辛格式的傅里叶有限差分地震波场正演[J]. 应用地球物理, 2017, 14(2): 258-269.
[15] 宋连腾,刘忠华,周灿灿,俞军,修立军,孙中春,张海涛. 致密砂岩弹性各向异性特征及影响因素分析[J]. 应用地球物理, 2017, 14(1): 10-20.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司