APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (3): 279-294    DOI: 10.1007/s11770-013-0383-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于S变换时频域极化滤波的面波压制方法研究
谭玉阳1,何川1,王艳冬2,赵忠3
1. 北京大学地球与空间科学学院石油与天然气研究中心,北京 100871
2. 中国石油大学(华东)地球科学与技术学院,山东青岛 266555
3. 中石化地球物理公司胜利分公司,山东东营 257086
Ground roll attenuation using a time-frequency dependent polarization filter based on the S transform
Tan Yu-Yang1, He Chuan1, Wang Yan-Dong2, and Zhao Zhong3
1. Institute of Oil & Gas, School of Earth and Space Sciences, Peking University, Beijing 100871, China.
2. School of Geosciences, China University of Petroleum (East China), Qingdao 266555, China.
3.Geophysical Corporation, Shengli Branch, SINOPEC, Dongying 257086, China.
 全文: PDF (3125 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 针对地震记录中的面波通常与体波在初至到时、频率成分以及极化特征方面存在明显差异,而单纯的时间域或者频率域极化滤波方法又无法同时考虑到这些要素,本文提出了一种基于S变换时频域极化滤波的面波压制方法。该方法通过利用多分量地震数据的S变换复系数计算得到多种能够表征数据极化特征的参数,并利用这些极化属性参数来构造滤波器函数。本文选用S变换来设计该极化滤波器是由于它所采用的高斯窗函数的宽度与频率成反比,能够保证每一频率成分所对应的时窗内均包含相同数目的谐波周期,因此,利用S变换可以更加准确地计算出时频域内每一点的局部极化属性。合成数据以及实际数据的处理结果表明本文提出的方法不仅能够有效压制面波,同时还能较好地保护体波。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭玉阳
何川
王艳冬
赵忠
关键词面波   S变换   谱矩阵   极化属性   极化滤波器     
Abstract: The ground roll and body wave usually show significant differences in arrival time, frequency content, and polarization characteristics, and conventional polarization filters that operate in either the time or frequency domain cannot consider all these elements. Therefore, we have developed a time-frequency dependent polarization filter based on the S transform to attenuate the ground roll in seismic records. Our approach adopts the complex coefficients of the S transform of the multi-component seismic data to estimate the local polarization attributes and utilizes the estimated attributes to construct the filter function. In this study, we select the S transform to design this polarization filter because its scalable window length can ensure the same number of cycles of a Fourier sinusoid, thereby rendering more precise estimation of local polarization attributes. The results of applying our approach in synthetic and real data examples demonstrate that the proposed polarization filter can effectively attenuate the ground roll and successfully preserve the body wave.
Key wordsGround roll   S transform   spectral matrix   polarization attributes   polarization filter   
收稿日期: 2013-01-10;
基金资助:

本研究由国家科技重大专项(编号:2011ZX05005-005-007HZ)以及国家自然科学基金(编号:41274116)联合资助。

作者简介: 谭玉阳,北京大学地球与空间科学学院在读博士研究生,2010年获得中国石油大学(华东)地球物理学专业学士学位,目前主要研究方向为:(1)地震信号处理,(2)水力压裂微地震成像技术。
引用本文:   
谭玉阳,何川,王艳冬等. 基于S变换时频域极化滤波的面波压制方法研究[J]. 应用地球物理, 2013, 10(3): 279-294.
TAN Yu-Yang,HE Chuan,WANG Yan-Dong et al. Ground roll attenuation using a time-frequency dependent polarization filter based on the S transform[J]. APPLIED GEOPHYSICS, 2013, 10(3): 279-294.
 
[1] Benhama, A., Cliet, C., and Dubesset, M., 1988, Study and applications of spatial directional filterings in three-component recordings: Geophysical Prospecting, 36(6), 591 - 613.
[2] Chen, H. F., Luo, G. A., Hou, A. Y., Zhao, G. L., and Lei, N., 2010, Ground roll attenuation by robust complex polarization analysis: 80th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1714 - 1718.
[3] De Franco, R., and Musacchio, G., 2001, Polarization filter with singular value decomposition: Geophysics, 66(3), 932 - 938.
[4] De Meersman, K., and Kendall, R., 2005, A complex SVD-polarization filter for ground roll attenuation on multi-component data: 67th Conference and Exhibition, EAGE, Extended Abstracts, B019.
[5] Diallo, M. S., Kulesh, M., Holschneider, M., and Scherbaum, F., 2005, Instantaneous polarization attributes in the time-frequency domain and wavefield separation: Geophysical Prospecting, 53(5), 723 - 731.
[6] Diallo, M. S., Kulesh, M., Holschneider, M., Kurennaya, K., and Scherbaum, F., 2006, Instantaneous polarization attributes based on an adaptive approximate covariance method: Geophysics, 71(5), V99 - V104.
[7] Diallo, M. S., Kulesh, M., Holschneider, M., Scherbaum, F., and Adler, F., 2006, Characterization of polarization attributes of seismic waves using continuous wavelet transforms: Geophysics, 71(3), V67 - V77.
[8] Flinn, E. A., 1965, Signal analysis using rectilinearity and direction of particle motion: Proceed. IEEE, 53(12), 1874 - 1876.
[9] Jin, S., and Ronen, S., 2005, Ground roll detection and attenuation by 3C polarization analysis: 67th Conference and Exhibition, EAGE, Extended Abstracts, B020.
[10] Jurkevics, A., 1988, Polarization analysis of three-component array data: Bull. Seism. Soc. Am., 78(5), 1725 - 1743.
[11] Kendall, R., Jin, S., Ronen, S., and De Meersman, K., 2005, An SVD-polarization filter for ground roll attenuation on multicomponent data: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 928 - 931.
[12] Kulesh, M., Diallo, M. S., Holschneider, M., Kurennaya, K., Krüger, F., Ohrnberger, M., and Scherbaum, F., 2007, Polarization analysis in the wavelet domain based on the adaptive covariance method: Geophys. J. Int., 170(2), 667 - 678.
[13] Liu, G., Fomel, S., and Chen, X., 2011, Time-frequency analysis of seismic data using local attributes: Geophysics, 76(6), P23 - P34.
[14] Lu, J., Wang, Y., and Yang, C. Y., 2010, Instantaneous polarization filtering focused on suppression of surface waves: Applied Geophysics, 7(1), 88 - 97.
[15] Montalbetti, J. F., and Kanasewich, E. R., 1970, Enhancement of teleseismic body phases with a polarization filter: Geophys. J. R. Astr. Soc., 21(2), 119 - 129.
[16] Moriya, H., and Niitsuma, H., 1996, Precise detection of a P-wave in low S/N signal by using time-frequency representations of a triaxial hodogram: Geophysics, 61(5), 1453 - 1466.
[17] Morozov, I. B., and Smithson, S. B., 1996, Instantaneous polarization attributes and directional filtering: Geophysics, 61(3), 872 - 881.
[18] Perelberg, A. I., and Hornbostel, S. C., 1994, Applications of seismic polarization analysis: Geophysics, 59(1), 119 - 130.
[19] Pinnegar, C. R., 2006, Polarization analysis and polarization filtering of three-component signals with the time-frequency S transform: Geophys. J. Int., 165(2), 596 - 606.
[20] Pinnegar, C. R., 2006, Time-Frequency polarization analysis and filtering: 76th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1223 - 1227.
[21] René, R. M., Fitter, J. L., Forsyth, P. M., Kim, K.Y., Murray, D. J., Walters, J. K., and Westerman, J. D., 1986, Multicomponent seismic studies using complex trace analysis: Geophysics, 51(6), 1235 - 1251.
[22] Samson, J. C., 1973, Descriptions of the polarization states of vector processes: Applications to ULF magnetic fields: Geophys. J. R. Astr. Soc., 34(4), 403 - 419.
[23] Samson, J. C., 1977, Matrix and stokes vector representations of detectors for polarized waveforms: theory, with some applications to teleseismic waves: Geophys. J. R. Astr. Soc., 51(3), 583 - 603.
[24] Samson, J. C., 1983, The reduction of sample-bias in polarization estimators for multichannel geophysical data with anisotropic noise: Geophys. J. R. Astr. Soc., 75(2), 289 - 308.
[25] Samson, J. C., and Olson, J.V., 1980, Some comments on the descriptions of the polarization states of waves: Geophys. J. R. Astr. Soc., 61(1), 115 - 129.
[26] Samson, J. C., and Olson, J. V., 1981, Data-adaptive polarization filters for multichannel geophysical data: Geophysics, 46(10), 1423 - 1431.
[27] Schimmel, M., and Gallart, J., 2003, The use of instantaneous polarization attributes for seismic signal detection and image enhancement: Geophys. J. Int., 155(2), 653 - 668.
[28] Schimmel, M., and Gallart, J., 2005, The inverse S transform in filters with time-frequency localization: IEEE Trans. Signal Process., 53(11), 4417 - 4422.
[29] Shieh, C. F., and Herrmann, R. B., 1990, Ground roll: Rejection using polarization filters: Geophysics, 55(9), 1216 - 1222.
[30] Sinha, S., Routh, P. S., Anno, P. D., and Castagna, J. P., 2005, Spectral decomposition of seismic data with continuous-wavelet transform: Geophysics, 70(6), P19 - P25.
[31] Soma, N., Niitsuma, H., and Baria, R., 2002, Reflection technique in time-frequency domain using multicomponent acoustic emission signals and application to geothermal reservoirs: Geophysics, 67(3), 928 - 938.
[32] Stockwell, R. G., Mansinha, L., and Lowe, R. P., 1996, Localization of the complex spectrum: The S transform: IEEE Trans. Signal Process., 44(4), 998 - 1001.
[33] Taner, M. T., Koehler, F., and Sheriff, R. E., 1979, Complex seismic trace analysis: Geophysics, 44(6), 1041 - 1063.
[34] Vidale, J. E., 1986, Complex polarization analysis of particle motion: Bull. Seism. Soc. Am., 76(5), 1393 - 1405.
[1] 吴宗蔚,伍翊嘉,徐明华,郭思. 连续谱比斜率法叠前CMP道集Q值估计[J]. 应用地球物理, 2018, 15(3-4): 481-490.
[2] 孔选林,陈辉,胡治权,康佳星,徐天吉,李录明. 基于时频域极化属性的多分量地震数据面波压制方法[J]. 应用地球物理, 2018, 15(1): 99-110.
[3] 袁焕,胡自多,刘朝,马坚伟. 基于经验曲波变换的面波压制方法[J]. 应用地球物理, 2018, 15(1): 111-117.
[4] 孔雪,王德营,李振春,张瑞香,胡秋媛. 平面波预测滤波分离绕射波方法研究[J]. 应用地球物理, 2017, 14(3): 399-405.
[5] 王德营,黄建平,孔雪,李振春,王姣. 基于时频二次谱的提高地震资料分辨率方法[J]. 应用地球物理, 2017, 14(2): 236-246.
[6] 李闯,黄建平,李振春,王蓉蓉. 基于奇异值谱约束的叠前平面波最小二乘逆时偏移方法[J]. 应用地球物理, 2017, 14(1): 73-86.
[7] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[8] 张煜,平萍,张双喜. 孔隙介质中面波有限差分模拟及应力镜像条件[J]. 应用地球物理, 2017, 14(1): 105-114.
[9] 王德营,凌云. 基于相移和相位滤波的面波压制方法[J]. 应用地球物理, 2016, 13(4): 614-620.
[10] 杜正聪,胥德平,张金明. 分数阶S变换,第二部分:在储层预测及流体识别中的应用[J]. 应用地球物理, 2016, 13(2): 343-352.
[11] 徐小红, 屈光中, 张洋, 毕云云, 汪金菊. 基于形态成分分析地震信号二维域面波分离方法研究[J]. 应用地球物理, 2016, 13(1): 116-126.
[12] 安勇. 叠前地震衰减各向异性的裂缝预测方法及应用[J]. 应用地球物理, 2015, 12(3): 432-440.
[13] 周怀来, 王峻, 王明春, 沈铭成, 张昕锟, 梁平. 基于广义S变换的地震资料振幅谱补偿和相位谱校正方法研究[J]. 应用地球物理, 2014, 11(4): 468-478.
[14] 陈海峰, 李向阳, 钱忠平, 赵桂玲. 一种稳健压制陆上三分量地震记录中面波的自适应极化分析方法[J]. 应用地球物理, 2013, 10(3): 294-304.
[15] 刘国昌, 陈小宏, 宋建勇, 芮振华. 地层构造约束的稳定最小平方成像条件研究[J]. 应用地球物理, 2012, 9(4): 459-467.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司