APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 192-200    DOI: 10.1007/s11770-009-0021-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |   
应用改进Chirplet变换进行探地雷达数据处理和目标探测
曾昭发1,2,吴丰收1,黄玲1,刘凤山2,孙继广2
1. 吉林大学地球探测科学与技术学院,长春 130026
2. Delaware State University,Dover,DE 19901
The adaptive chirplet transform and its application in GPR target detection
Zeng Zhao-Fa1,2, Wu Feng-Shou1, Huang Ling1, Liu Feng-Shan2,  and Sun Ji-Guang2
1. Collage of Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. Applied Mathematic Research Center, Delaware State University, Dover, DE 19901, USA.
 全文: PDF (779 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 探地雷达不仅能够探测金属目标体,而且能够探测非金属目标体,而成为UXO和地雷探测的一种重要的浅部地球物理方法。但是在地雷和UXO探测中,目标体埋藏深度浅,在探地雷达数据信噪比较低情况下,地表和土壤层的反射严重干扰对目标体的拾取。本文我们采用改进的chirplet变换来消除地表层和土壤层变化的干扰,并Radon—Wigner分布的基础上,采用改进的chirplet变换来拾取目标体的信号。通过对实际探测实验数据应用证明,本方法处理结果比传统的偏移方法具有较高的信噪比,并能清晰地提取的目标体信号。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾昭发
吴丰收
黄玲
刘凤山
孙继广
关键词探地雷达   目标探测   干扰消除   Chirplet变换     
Abstract: GPR has become an important geophysical method in UXO and landmine detection, for it can detect both metal and non-metallic targets. However, it is difficult to remove the strong clutters from surface-layer reflection and soil due to the low signal to noise ratio of GPR data. In this paper, we use the adaptive chirplet transform to reject these clutters based on their character and then pick up the signal from the UXO by the transform based on the Radon-Wigner distribution. The results from the processing show that the clutter can be rejected effectively and the target response can be measured with high SNR.
Key wordsGPR   target detection   clutter rejection   chirplet transform   
收稿日期: 2008-10-06;
基金资助:

本研究由美国国防部科研基金(编号:DAAD 19-03-1- 0375)和国家自然科学基金(编号:40474042)资助。

引用本文:   
曾昭发,吴丰收,黄玲等. 应用改进Chirplet变换进行探地雷达数据处理和目标探测[J]. 应用地球物理, 2009, 6(2): 192-200.
ZENG Zhao-Fa,WU Feng-Shou,HUANG Ling et al. The adaptive chirplet transform and its application in GPR target detection[J]. APPLIED GEOPHYSICS, 2009, 6(2): 192-200.
 
[1] Alaee, M., and Amindavar, H., 2008, Chirplet-based target recognition using RADAR technology: 5th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM. 21 - 23 July, 451 - 454.
[2] Bruschini, C., Gros, B., Guerne, F., Piece, P.Y., and Carmona, O., 1998, Ground penetrating radar and imaging metal detector for antipersonnel mine detection: J. Appl. Geophys., 40, 59 - 71.
[3] Chowdhury, F., 1996, Kalman filter with hypothesis testing: A tool for estimating uncertain parameters: Circuits Systems Signal Processing., 15(3), 291 - 311.
[4] Dugnol, B., Fernández, C., Galiano, G., and Velasco, J., 2008, On a chirplet transform-based method applied to separating and counting wolf howls: Signal Processing, 88(7), 1817 - 1826.
[5] Fritzsche, M., 1995, Detection of buried landmines using ground penetrating radar: Proceedings of the SPIE, 2496, 100 - 109.
[6] Irving, J. D., and Knight, R. J., 2003, Removal of wavelet dispersion from ground-penetrating radar data: Geophysics, 68(3), 960 - 970.
[7] Lu, Y., Oruklu, E., Saniie, J., 2008, Fast chirplet transform with FPGA-based implementation: IEEE Signal Processing Letters, 15, 577 - 580.
[8] Mann, S., and Haykin, S., 1991, The adaptive chirplet: An adaptive generalized wavelet-like transform: Proceedings of the SPIE, 1565, 402 - 413.
[9] Mann, S. and Haykin, S., 1992, Adaptive ‘chirplet’ transform: an adaptive generalization of the wavelet transform: Optical Engineering, 31(6), 1243 - 1256.
[10] Mann, S. and Haykin, S., 1995, The chirplet transform: Physical considerations: IEEE Trans. Signal Processing, 43, 2745 - 2461.
[11] Qian, S., Dunham, M. E., and Freeman, M. J., 1995, Trans-ionospheric signal recognition by joint time-frequency representation: Radio Sci., 30(6), 1817 - 1829.
[12] Salvati, J. L., Chen, C. C., and Johnson, J. T., 1998, Theoretical study of a surface clutter reduction algorithm: Proc. of 1998 IEEE International Geoscience and Remote Sensing, 3, 1460 - 1462.
[13] Singh, S., 2007, Sensors-An effective approach for the detection of explosives: Journal of Hazardous Materials, 144(1 - 2), 15 - 28.
[14] Turner, G., and Siggins, A. F., 1994, Constant Q attenuation of subsurface radar pulses: Geophysics, 59(8), 1192 - 1200.
[15] van Kempen, L., and Sahli, H., 2001, Signal processing techniques for clutter parameters estimation and clutter removal in GPR data for landmine detection: Proceedings of the 11th IEEE Signal Processing Workshop on Statistical Signal Processing, 158 - 161.
[16] van der Merwe, A., and Gupta, I. J., 2000, A novel signal processing technique for clutter reduction in GPR measurement of small, shallow land mines: IEEE Transactions on Geoscience and Remote Sensing, 38(6), 2627 - 2637.
[17] Wang, G., Xia, X., Root, B.T., Chen, V. C., Zhang, Y., and Amin, M., 2003, Maneuvering target detection in over-the-horizon radar using adaptive clutter rejection and adaptive chirplet transform: IEEE Proc. Radar Sonar Navig., 150(4), 292 - 298.
[18] Wang, J., and Zhou, J., 1999, Chirplet-based signal approximation for earthquake ground-motion model: IEEE Signal Processing Mag., 16, 94 - 99.
[19] Yin, Q., Qian, S., and Feng, A., 2002, A fast refinement for adaptive Gaussian chirplet decomposition: IEEE Trans. Signal Processing, 50(6), 1298 - 1306.
[1] 曾昭发, 陈雄, 李静, 陈玲娜, 鹿琪, 刘凤山. 随机等效介质探地雷达参数递推阻抗反演研究[J]. 应用地球物理, 2015, 12(4): 615-625.
[2] 赵文轲, 田钢, 王帮兵, 石战结, 林金鑫. 探地雷达三维属性技术在考古调查中的应用研究[J]. 应用地球物理, 2012, 9(3): 261-269.
[3] 张红静, 周辉, Abd El-Aziz Khairy Abd El-Aal, 张洁. 消除滑动扫描地震数据中谐波干扰的反相关方法[J]. 应用地球物理, 2012, 9(2): 159-167.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司