APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2009, Vol. 6 Issue (2): 138-149    DOI: 10.1007/s11770-009-0022-1
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
二阶精度广义非线性全局最优的偏移速度反演方法
赵太银1,胡光岷1,贺振华2,黄德济2
1. 电子科技大学通信与信息工程学院,成都 610054
2. 成都理工大学油气藏地质与开发工程国家重点实验室,成都 610059
A Quadratic precision generalized nonlinear global optimization migration velocity inversion method
1. School of Communication and Information Engineering, UESTC, Chengdu 610054, China.
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, CDUT, Chengdu 610059, China.
Zhao Tai-Yin1, Hu Guang-Min1, He Zhen-Hua2, and Huang De-Ji2
 全文: PDF (0 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 如何快速、精确地利用叠前深度偏移进行偏移速度分析是勘探地震学的一项重要研究内容,针对该问题,本文提出一种二阶精度广义非线性全局最优的偏移速度反演方法。我们将首先去掉速度模型修正量与成象深度差呈线性关系的假设,推导出具有二阶精度的速度模型修正量计算公式,使每一次迭代得到的速度模型尽可能地接近实际模型;然后采用广义非线性反演方法反演获得对所有道集的全局最优的速度模型修正量,不仅极大地加快了收敛速度,而且反演过程中陷入局部极小的可能性也减小了。理论模型和Marmousi模型的处理结果表明:本方法精度高、处理速度快,提高了偏移速度分析方法的实用性和对复杂构造成像的准确性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵太银
胡光岷
贺振华
黄德济
关键词叠前深度偏移   偏移速度分析   广义非线性反演   共成像道集     
Abstract: An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Marmousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas.
Key wordsPre-stack depth migration   migration velocity analysis   generalized nonlinear inversion   common imaging gather   
收稿日期: 2009-03-10;
基金资助:

本研究由国家自然科学基金资助项目(编号:40839905)资助。

引用本文:   
赵太银,胡光岷,贺振华等. 二阶精度广义非线性全局最优的偏移速度反演方法[J]. 应用地球物理, 2009, 6(2): 138-149.
ZHAO Tai-Yin,HU Guang-Min,HE Zhen-Hua et al. A Quadratic precision generalized nonlinear global optimization migration velocity inversion method[J]. APPLIED GEOPHYSICS, 2009, 6(2): 138-149.
 
[1] Al-Yahya, K., 1989, Velocity analysis by iterative profile migration: Geophysics, 54, 718 - 729.
[2] Biondi, B., and Sava, P., 1999, Wave-equation migration velocity analysis: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1723 - 1726.
[3] Biondi, B., and T. Tisserant, 2004, 3-D angle-domain common-image gathers for migration velocity analysis: Geophysical Prospecting, 52, 575 - 591.
[4] Guo, J. Y., and Zhou, H. B., 2002, Toward accurate velocity models by 3D tomographic velocity analysis: EAGE 64th Conference & Exhibition, 27 - 30.
[5] He, Z. H., Huang, D. J., and Hu, G. M., 1999, The characteristic, theory and its application of seismic wave field in complex oil-gas reservoir: Sichuan Publishing House of Science & Technology.
[6] He Z. H., 1989, Seismic reflection data migration and inverse methods, Chongqing Publishing House.
[7] He, Z. H., Xiong, G. J., and Zhang, Y. X., 1998, Nonzero offset seismic forward modeling by one-way acoustic wave equation: 68th Ann. Internat. Mtg., Soc.Expl.Geophys., Expanded Abstracts, 1921 - 1924.
[8] Hu, G. M., He, Z. H., and Huang, D. J., 2001, Nonlinear optimal inversion of seismic trace: Chinese Journal of Geophysics, 44, 240 - 247.
[9] Huang, L. J., Fehler, M., and Roberts, P., 1999, Extended local Rytov Fourier migration method, Geophysics, 64(1), 1524 - 1534.
[10] Huang, L. J., Fehler, M., and Wu, R.S., 1999, Extended local Born Fourier migration method, Geophysics, 64(1), 1535 - 1545.
[11] Lafond, C. F., and Levander, A. R., 1993, Migration moveout analysis and depth focusing: Geophysics, 58(1), 91 - 100.
[12] Li, Y. M., 2002, Improving the level of seismic wave’s migration and attribute’s description in face of exploration and exploitation: Progress in Exploration Geophysics, 17(2), 198 - 210.
[13] Liu, S. W., and Wang, H. Z., 2006, Time-shift depth-focusing for migration velocity analysis: Internat. Geophy. Mtg., SPG/SEG. Expanded Abstracts, 51 - 54.
[14] Liu, S. W., Geng, J. H., Feng, W., 2005, Controlled illumination and seismic acquisition geometry for target-oriented imaging: Applied Geophysics, 2(4), 230 - 234.
[15] Liu, W., Popovici, A. M., and Bevc, D., 2001, 3D migration velocity analysis for common image gathers in the reflection angle domain: 71th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 885 - 888.
[16] Liu, Z. Y., and Bleistein, N., 1995, Migration velocity analysis: Theory and an iterative algorithm: Geophysics, 60(1), 142 - 153.
[17] Liu, Z. Y., 1997, An analytical approach to migration velocity analysis: Geophysics, 62(4), 1238 - 1249.
[18] Mackay, S. and Abma, R., 1992, Imaging and velocity estimation with depth-focusing analysis: Geophysics, 57(6), 1608 - 1622.
[19] Meng, Z. B., Bleistein, N., and Waytt, K., 1999a, 3-D analytical migration velocity analysis I: Two-step velocity estimation by reflector-normal update: 69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1727 - 1730.
[20] Meng, Z. B., Bleistein, N., and Valasek, P., 1999b, 3-D analytical migration velocity analysis II: Velocity gradient estimation: 69th Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1731 - 1734.
[21] Sava, P., and Biondi, B., 2004, Diffraction-focusing migration velocity analysis: 74th Ann. Internat. Mtg, Soc. Expl. Geophys., Expanded Abstracts, 2395-2398.
[22] Schuster, G. T., and Hu, J. X., 2000, Green’s function for migration: Continuous recording geometry: Geophysics, 65(1), 167 - 175.
[23] Wang, B., and Pann, K., 1998, Model-based interpretation of focusing panels for depth focusing analysis: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1596 - 1599.
[24] Xin, K. F., Wang, H. Z., and Ma, Z. T., 2002, Migration + inversion: An accurate migration velocity analysis method: Progress in Exploration Geophysics, 25(3), 20 - 26.
[25] Yang, W. C., 1989, Geophysical inversion and the seismic CT method: Geological Publishing House.
[26] Zhang, W. S., and Zhang, G. Q., 2001, Prestack depth migration by hybrid method with high precision and its parallel implementation: Chinese Journal of Geophysics, 44(4), 542 - 551.
[27] Zhou, H. B., Guo, J. Y., and Young, J., 2001, An alternative residual-curvature velocity updating method for prestack depth migration: 71th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 877 - 880.
[1] 吴娟, 陈小宏, 白敏, 刘国昌. 基于吸收衰减补偿的多分量高斯束叠前深度偏移[J]. 应用地球物理, 2015, 12(2): 157-168.
[2] 刘少勇, 王华忠, 刘太臣, 胡英, 张才. 基于旅行时梯度场的Kirchhoff PSDM角道集生成方法研究[J]. 应用地球物理, 2015, 12(1): 64-72.
[3] 韩建光, 王赟, 韩宁, 邢占涛, 芦俊. 多波高斯束叠前深度偏移速度分析[J]. 应用地球物理, 2014, 11(2): 186-196.
[4] 周辉, 林鹤, 盛善波, 陈汉明, 王颖. 补偿吸收衰减的高角度叠前深度偏移方法[J]. 应用地球物理, 2012, 9(3): 293-300.
[5] 巩向博, 韩立国, 牛建军, 张晓培, 王德利, 杜立志. 联合速度建模及其在反射波法隧道超前预报中的应用[J]. 应用地球物理, 2010, 7(3): 265-271.
[6] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 7(1): 49-56.
[7] 张凯, 李振春, 曾同生, 董晓春. 角度域共成像点道集剩余曲率法偏移速度分析[J]. 应用地球物理, 2010, 6(1): 49-56.
[8] 叶月明, 李振春, 徐秀刚, 朱绪峰, 仝兆岐. 基于单程波方程的角度域保幅偏移[J]. 应用地球物理, 2009, 6(1): 50-58.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司