APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (3): 225-232    DOI: 10.1007/s11770-011-0284-2
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于表层多次波数据的近道地震数据插值方法研究
郭书娟1,李振春1,仝兆岐1,马方正2,刘建辉3
1. 中国石油大学(华东)地球资源与信息学院,山东青岛 266555;
2. 中国石油化工股份有限公司胜利油田分公司物探研究院,山东东营 257061;
3. 中海石油(中国)有限公司天津分公司渤海油田勘探开发研究院,天津塘沽 300452
Interpolation of near offset using surface-related multiples
Guo Shu-Juan1, Li Zhen-Chun1, Tong Zhao-Qi1, Ma Fang-Zheng2, and Liu Jian-Hui3
1. College of Geo-resources and Information, China University of Petroleum (East China), Qingdao 266555, China.
2. Geophysical Research Institute of SINOPEC Shengli Oilfield, Dongying 257061, China.
3. Research Institute of Exploration and Development, Tianjin Branch of CNOOC Ltd.,Tianjin,300452, China.
 全文: PDF (808 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文提出基于原始含表层多次波数据实现叠前共炮集地震数据插值。相对于利用相邻道的信息变换或外推插值用于缺失的地震数据重建,本文方法利用表层多次波数据互相关构建准一次波,将蕴含在表层多次波数据中的,而在采集记录中表现为缺失的近炮检距信息提取出来,并在滑动时间空间窗内采用最小二乘匹配滤波和均方根振幅校正方法进行准一次波校正而后用于数据插值重建。本文方法适用于表层多次波比较发育,同时又存在数据缺失尤其是近炮检距数据缺失情况。方法易于实现,不需多次波和一次波的提取,利用多次波中蕴含的信息实现缺失的地震数据弥补,为含有表层多次波的数据进行近炮检距地震信息的插值重建提供了一个很好的思路。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭书娟
李振春
仝兆岐
马方正
刘建辉
关键词表层多次波   最小二乘匹配滤波   均方根振幅校正   地震道插值     
Abstract: In this research, we present a seismic trace interpolation method which uses seismic data with surface-related multiples. It is different from conventional seismic data interpolation using information transformation or extrapolation of adjacent channels for reconstruction of missing seismic data. In this method there are two steps, first, we construct pseudo-primaries by cross-correlation of surface multiple data to extract the missing nearoffset information in multiples, which are not displayed in the acquired seismic record.Second, we correct the pseudo-primaries by applying a Least-squares Matching Filter (LMF) and RMS amplitude correction method in time and space sliding windows. Then the corrected pseudo-primaries can be used to fill the data gaps. The method is easy to implement, without the need to separate multiples and primaries. It extracts the seismic information contained by multiples for filling missing traces. The method is suitable for seismic data with surfacerelated multiples.
Key wordsSurface-related multiples   Least-squares Matching Filter   RMS amplitude correction   seismic interpolation   
收稿日期: 2010-12-26;
基金资助:

国家重点基础研究发展计划(973计划)(编号:2007CB209605),国家自然科学基金(编号:40974073)和国家863课题(编号:2009AA06Z206)联合资助。

引用本文:   
郭书娟,李振春,仝兆岐等. 基于表层多次波数据的近道地震数据插值方法研究[J]. 应用地球物理, 2011, 8(3): 225-232.
GUO Shu-Juan,LI Zhen-Chun,TONG Zhao-Qi et al. Interpolation of near offset using surface-related multiples[J]. APPLIED GEOPHYSICS, 2011, 8(3): 225-232.
 
[1] Berkhout, A. J., and Verschuur, D. J., 2003, Transformation of multiples into primary reflections: 73th Ann. Internat Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1925-1928.
[2] Berkhout, A. J., and Verschuur, D. J., 2006, Imaging of multiple reflections: Geophysics, 71 (4), S1209-S1220.
[3] Chemingui, N., and Biondi, B., 1999, Handling the irregular geometry in wide azimuth surveys: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 32-35.
[4] Claerbout, J., and Nichols, D., 1991, Interpolation beyond aliasing by (t-x) domain in PEFs: 53th Ann. Internat. Mtg., Eur. Assn. Geosci. Eng., Expanded Abstracts, 1-10.
[5] Curry, W., and Shan, G., 2008, Interpolation of near offsets using multiples and prediction-error filters: 78th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2421-2424.
[6] Curry, W., and Shan, G., 2010, Interpolation of near offsets using multiples and prediction-error filters: Geophysics, 75 (6), WB153-WB164.
[7] 国九英, 周兴元. 1996, FK域等道距道内插. 石油地球物理勘探, 31(2), 211-218.
[8] Ji, J., 1993, Interpolation using prediction-error filter simulation (PEFs): 63th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1170-1173.
[9] Kabir, M. N., and Verschuur, D. J., 1995, Restoration of missing offsets by parabolic Radon transform: Geophysical Prospecting, 43 (3), 347-368.
[10] Liu, B., and Sacchi, M., 2001, Minimum weighted norm interpolation of seismic data with adaptive weights: 73th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1921-1924.
[11] Ronen, J., 1987, Wave-equation trace interpolation: Geophysics, 52 (7), 973-984.
[12] Shan, G., 2003, Source-receiver migration of multiple reflections: 73th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 1008-1011.
[13] Shan, G., and Guitton, A., 2004, Migration of surface-related multiples: tests on the Sigsbee2B dataset: 74th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1497-1500.
[14] Spitz, S., 1991, Seismic trace interpolation in the F-X domain: Geophysics, 56 (6), 785-794.
[15] Thorson, J. R., and Claerbout J. F., 1985, Velocity-stack and slant stack stochastic inversion: Geophysics, 50 (12), 2727-2741.
[16] Verschuur, D. J., and Berkhout, A. J., 2005, Transforming multiples into primaries: experience with field data: 75th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2103-2106.
[17] Wang, Y. H., 2003, Sparseness-constrained least-squares inversion: Application to seismic wave reconstruction: Geophysics, 68 (5), 1633-1638.
[18] Zwartjes, P. M., and Gisolf, A., 2007, Fourier reconstruction with sparse inversion: Geophysical Prospecting, 55 (2), 199-221.
没有找到本文相关文献
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司