APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2011, Vol. 8 Issue (4): 285-292    DOI: 10.1007/s11770-011-0303-3
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
大地电磁测深数据处理—4元素和6元素阻抗张量元素的比较研究
Shireesha M. and Harinarayana T.
印度国家地球物理研究所, 印度 海得拉巴 500007
Processing of magnetotelluric data - a comparative study with 4 and 6 element impedance tensor elements
Shireesha M.1 and Harinarayana T.1
National Geophysical Research Institute, Hyderabad 500007, India
 全文: PDF (147 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 阻抗张量元素的计算是大地电磁测深数据处理的重要一步。通常,阻抗张量被定义为以Zxx,Zxy,Zyx和Zyy为元素的2×2 矩阵。在本次研究中,6个元素的阻抗张量的计算使用了一个含有Zxx,Zxy,Zyx,Zyy,Zxz和Zyz分量的2×3矩阵。对上述两类阻抗张量元素的属性进行了分析。利用由印度古吉特拉邦卡奇沉积盆地采集的5个分量大地电磁数据测试了文中的方法。从视电阻率和相位的计算中我们观察到在大部分的频带范围内4个元素阻抗和6个元素阻抗Zxy和Zyx两类元素区别不大。然而,较长周期时间的数据,如超过100秒,观察到视电阻率的增加和相位的减少。我们还注意到,倾子幅度在大部分时间几乎是零,但较长周期(超过100秒),逐渐呈增加的趋势。卡奇沉积盆地的地电断面表明在较长的周期内浅层近水平层和深层异常高电导性的不均质层都可能是引起大的Hz分量的原?因。这表明,磁场垂直分量Hz对在大的2D/3D结构区域内的电场参数估计发挥重要的作用。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
Shireesha M. and Harinarayana T.
关键词大地电磁   阻抗张量     
Abstract: Computation of impedance tensor elements is one of the important steps in magnetotelluric data processing. Conventionally, the impedance tensor is defined as a 2 × 2 matrix with Zxx, Zxy, Zyx, and Zyy as elements. In the present study, the six-element impedance tensor is computed with a 2 × 3 matrix using Zxx, Zxy, Zyx, Zyy, Zxz, and Zyz. The properties of the impedance tensor elements have been analyzed for these above two types. The methodology has been tested with five component magnetotelluric data from the Kutch sedimentary basin, Gujarat, India. From the computation of apparent resistivity computation and phase we observed that there is small difference between the four and six impedance elements of Zxy and Zyx for most of the frequency band. However for longer period data, more than 100 sec, an increase in the apparent resistivity and decrease in the phase is observed. We also note that the tipper magnitude is nearly zero for most of the periods, but gradually shows an increasing trend for longer periods (>100 sec). The Kutch sedimentary basin geoelectric section shows near horizontal layers at shallow depths and anomalous high conductivity heterogeneous layers at deeper depths may be responsible for the large Hz component at longer periods. This indicates that the vertical component of the magnetic field, Hz, does play an important role in the estimation of electric field parameters in the region with large 2D/3D structures.
Key wordsMagnetotelluric data   impedance tensor   
收稿日期: 2011-11-03;
引用本文:   
Shireesha M. and Harinarayana T.. 大地电磁测深数据处理—4元素和6元素阻抗张量元素的比较研究[J]. 应用地球物理, 2011, 8(4): 285-292.
Shireesha M. and Harinarayana T.. Processing of magnetotelluric data - a comparative study with 4 and 6 element impedance tensor elements[J]. APPLIED GEOPHYSICS, 2011, 8(4): 285-292.
 
[1] Biswas, S.K., 2005, A review of structure and tectonics of kutch basin, western India, with special reference to earthquakes: Curr. Sci., 88, 1592 - 1600.
[2] Cagniard, L., 1953, Basic theory of the magnetotelluric method of geophysical prospecting: Geophys., 18, 605 - 635.
[3] Cantwell, T., 1960, Detection and analysis of lowfrequency magnetotelluric signals: Ph.D. thesis, MIT, USA.
[4] Kaufman, A.A., and Keller, G.V., 1981, The Magnetotelluric Sounding Method: Elsevier, Amsterdam, p.457.
[5] Sastry, R.S., Nagarajan, N., and Sarma, S.V.S., 2008, Electrical imaging of deep crustal features of Kutch, India: Geophys. Jour. Int., 172, 934 - 944.
[6] Sims, W.E., F.X., Bostic, Jr., and H.W. Smith, 1971, The estimation of magnetotelluric impedance tensor elements from measured data: Geophysics, 36, 938 - 942.
[7] Spies, B.R., and Eggers, D.W., 1986, The use and misuse of apparent resistivity in electromagneticmethods: Geophys., 51, 1462 - 1471.
[8] Vozoff, K., 1972, The magnetotelluric method in the exploration of sedimentary basins: Geophys., 37, 98 - 141.
[9] Vozoff, K., 1991, The magnetotelluric method, in Electromagnetic methods in applied geophysics: M.N. Nabighian, Ed., Society of Exploration Geophysicists, Tulsa, Oklahoma, vol. 2, part B, 641 - 711.
[10] Wait, J.R., 1962, Theory of magnetotelluric fields; Journal of Research of the National Bureau of Standards, 66D, 509 - 541.
[11] Wight, D. E., 1988, SEG MT/EMAP Data Interchange Standard: Society of Exploration Geophysicists.
[1] 曹晓月,殷长春,张博,黄鑫,刘云鹤,蔡晶. 基于非结构网格的三维大地电磁法有限内存拟牛顿反演研究[J]. 应用地球物理, 2018, 15(3-4): 556-565.
[2] 王涛,王堃鹏,谭捍东. 三维主轴各向异性介质中张量CSAMT正反演研究[J]. 应用地球物理, 2017, 14(4): 590-605.
[3] 王堃鹏,谭捍东,王涛. 基于交叉梯度约束的CSAMT和磁法二维联合反演[J]. 应用地球物理, 2017, 14(2): 279-290.
[4] 李俊杰, 严家斌, 皇祥宇. 无网格法精度分析及在电磁法二维正演中的应用[J]. 应用地球物理, 2015, 12(4): 503-515.
[5] 胡英才, 李桐林, 范翠松, 王大勇, 李建平. 基于矢量有限元法的三维张量CSAMT正演模拟[J]. 应用地球物理, 2015, 12(1): 35-46.
[6] 林昌洪, 谭捍东, 舒晴, 佟拓, 张玉玫. 稀疏测线大地电磁资料三维反演研究:合成算例[J]. 应用地球物理, 2012, 9(1): 9-18.
[7] 林昌洪, 谭捍东, 佟拓. 大地电磁全信息资料三维共轭梯度反演研究[J]. 应用地球物理, 2011, 8(1): 1-10.
[8] 林昌洪, 谭捍东, 佟拓. 大地电磁三维快速松弛反演并行算法研究[J]. 应用地球物理, 2009, 6(1): 77-83.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司