APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2013, Vol. 10 Issue (1): 25-32    DOI: 10.1007/s11770-013-0365-5
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于多用户峰度准则的强噪声衰减方法
高伟1,2,刘怀山1
1. 中国海洋大学海洋地球科学学院复杂油气田物探方法实验室,青岛 266100;
2. 国家深海基地管理中心,青岛 266061
Strong noise attenuation method based on the multiuser kurtosis criterion
Gao Wei1,2 and Liu Huai-Shan1
1. Key Lab of Submarine Geosciences and Prospecting Techniques Ministry of Education, Ocean University of China, Qingdao 266100, China.
2. National Deep Sea Center, Qingdao 266061, China.
 全文: PDF (824 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 海洋地震勘探过程中,由于采集设备的老化或电源的不稳定而造成的漏电,在地震记录表现为强噪音干扰,利用常规噪音衰减方法处理此类强噪音效果并不理想。鉴于强噪音在统计学上具有相同的特性,本文在基于峰度的盲分离(blind source separation,BSS)算法研究基础上,推导出一种基于多用户峰度(multiuser kurtosis,MUK)准则的噪音衰减算法来估计地震记录中具有相同统计特性的强噪音,并将其从地震记录中分离,从而达到衰减强噪音的目的。模型试验与实际资料的处理表明:该方法能够在好的衰减海洋地震勘探记录中的强噪音,保留了更多的有效信息,提高海洋地震数据的信噪比,具有可行性和应用前景。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
高伟
刘怀山
关键词去噪   盲分离   多用户峰度   强干扰     
Abstract: The strong noise produced by the leakage of electricity from marine seismic streamers is often received with seismic signals during marine seismic exploration. Traditional denoising methods show unsatisfactory effects when eliminating strong noise of this kind. Assuming that the strong noise signals have the same statistical properties, a blind source separation (BSS) algorithm is proposed in this paper that results in a new denoising algorithm based on the constrained multi-user kurtosis (MUK) optimization criterion. This method can separate strong noise that shares the same statistical properties as the seismic data records and then eliminate them. Theoretical and field data processing all show that the denoising algorithm, based on multi-user kurtosis optimization criterion, is valid for eliminating the strong noise which is produced by the leakage of electricity from the marine seismic streamer so as to preserve more effective signals and increase the signal-noise ratio. This method is feasible and widely applicable.
Key wordsdenoising   blind source separation   multiuser kurtosis   strong noise   
收稿日期: 2012-04-11;
基金资助:

本研究由国家自然科学基金(编号:41176077)和国家海洋局青年科学基金(编号:2013702)资助。

引用本文:   
高伟,刘怀山. 基于多用户峰度准则的强噪声衰减方法[J]. 应用地球物理, 2013, 10(1): 25-32.
GAO Wei,LIU Huai-Shan. Strong noise attenuation method based on the multiuser kurtosis criterion[J]. APPLIED GEOPHYSICS, 2013, 10(1): 25-32.
 
[1] Amari, S. I., Varinen, H. A., and Lee, S. Y., 2002, Blind signal separation and independent component analysis: Neurocomputing, 49, 1 - 5.
[2] Canales, L. L, 1984, Random noise reduction: 54th Annual Internet. Mtg., Soc. Expl. Geophys., Expanded Abstracts, Session: S10.1, 525 - 572.
[3] Cardoso, J. F., 1989, Source separation using higher order moments: in Proc IEEE Int Conf Acoust, Speech, Signal Process, 4, 2109 - 2112.
[4] Comon, P., 1996, Contrasts for multichannel blind deconvolution: IEEE Signal Processing Lett, 3, 209 - 211.
[5] Comon, P., 1994, Independent components analysis: A new concept: Signal Process, 36(3), 287 - 314.
[6] Donoho, D., 1981, On minimum entropy deconvolution in applied time series analysis II: New York, Academic, 565 - 609.
[7] Franco, R. D., and Musacchio, G., 2001, Polarization filter with singular value decomposition: Geophysics, 66(3), 932 - 938.
[8] Galagher, N. C., and Wise, G. L., 1981, A theoretical analysis of the properties of Median Filters: IEEE Trans on Acoust, Speech and Signal Processing, 29(6), 1136 - 114.
[9] Inouye, Y., 1998, Criteria for blind deconvolution of multichannel linear time invariant systems: IEEE Trans Signal Processing, Special Issue on Signal Processing for Advanced Communications, 45, 268 - 271.
[10] Juttern, C., and Hearault, J., 1991, Blind separation of source, Part I: An adaptive algorithm based on neuromimetic architecture: Signal Processing, 24, 1 - 10.
[11] Juttern, C., and Hearault, J., 1991, Blind separation of source, Part II: An adaptive algorithm based on neuromimetic architecture: Signal Processing, 24, 11 - 20.
[12] Kamal, M., and AL-YAHYA, 1993, Application of partial karhunerr loeve transform to suppress random noise in seismic sections: Geophysical Prospecting, 39(1), 77 - 93.
[13] Li, H. Y., Hao, R. F., Ma, J. F., and Wang, H. K., 2007, Separation of noisy mixed image based on wiener filtering and independent component analysis: Application Research of Computers, 24(10), 161 - 162, 165.
[14] Mallat, S., 1989, Theory for multi-resolution signal decomposition: the wavelet representation: IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674 - 693.
[15] Papadias, C. B., 2000, Globally convergent blind source separation based on a multiuser kurtosis maximization criterion: IEEE Trans Signal Processing, 48(12), 3508 -3519.
[16] Papadias, C. B., and Paulraj, A., 1997, Blind separation of independent co-channel signals: 13th Int Conf Digital Signal Process, Santorini Greece, 139 - 142.
[17] Papadias, C. B., and Paulraj, A., 1997, A constant modulus algorithm for multiuser signal separation in presence of delay spread using antenna arrays: IEEE Signal Processing Lett, 4, 178 - 181.
[18] Shalvi, O., and Weinsten, E., 1990, New criteria for blind deconvolution of nonminimum phase systems (channels): IEEE Trans Inform Theory, 36, 312 - 321.
[19] Shynk, J. J., and Gooch, R. P., 1996, The constant modulus array for cochannel signal copy and direction finding: IEEE Trans Signal Processing, 44, 652 - 660.
[20] Swami, A. A., Giannakis, G., and Shamsunder, S., 1994, Multichannel ARMA processes: IEEE Trans, Signal Processing, 42, 898 - 913.
[21] Touzni, A., and Fijalkow, I., 1997, Blind adaptive equalization and simultaneous separation of convolutive mixtures: Digital Signal Process, 391 - 394.
[22] Treitel, S., 1974, The complex Wiener filter: Geophysics, 39, 169 - 173.
[23] Tugnait, J. K., 1997, Blind spatiotemporal equalization and impulse response estimation for MIMO channel using a Godard cost function: IEEE Trans Signal Processing, Special Issue on Signal Processing for Advanced Communications, 45, 268-271.
[24] Tugnait, J. K., 1997, Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria: IEEE Trans Signal Processing, 45, 658 - 672.
[25] Van, D. V. A., and Paulraj, A., 1996, An analytical constant modulus algorithm: IEEE Trans Signal Processing, 44, 1136 - 1155.
[26] Wei, L., 2004, Blind sources separation based on non-negative matrix factorization: Electronics Optics & Control, 11(2), 38 - 41, 53.
[27] Zhang, J. P., and Liu, A. L., 2008, Applications of blind source separation based on independent factor analysis: Journal of East China University of Science and Technology (Natural Science Edition), 34(3), 410 - 416.
[28] Zhu, X. L., and Zhang, X. D., 2004, Overdetermined blind source separation based on singular value decomposition: Journal of Electronics and Information Technology, 26(3), 337 - 343.
[29] Zong, T., Meng, H. Y., and Jia, Y. L., Liu, G. Z., 1998, Denoising method based on wavelet packet and forward-backward prediction in F-X domain: Chinese Journal of Geophysics, 41, 337 - 346.
[1] 刘金钊,王同庆,陈兆辉,张品,朱传东,张双喜. 基于插值切割位场分离技术分析2016-1-21青海门源Ms6.4级地震前重力变化特征[J]. 应用地球物理, 2018, 15(1): 137-146.
[2] 孔选林,陈辉,王金龙,胡治权,徐丹,李录明. 基于数据驱动的小波域分贝准则强能量振幅压制方法[J]. 应用地球物理, 2017, 14(3): 387-398.
[3] 张华,陈小宏,张落毅. 基于曲波变换的三维地震数据同时重建和噪声压制[J]. 应用地球物理, 2017, 14(1): 87-95.
[4] 王万里,杨午阳,魏新建,何欣. 基于小波分频与径向道变换的联合压制面波方法[J]. 应用地球物理, 2017, 14(1): 96-104.
[5] 葛子建, 李景叶, 潘树林, 陈小宏. 一种快速收敛的抗噪POCS地震数据重构方法[J]. 应用地球物理, 2015, 12(2): 169-178.
[6] 唐刚, 马坚伟, 杨慧珠. 基于学习型超完备字典的地震数据去噪[J]. 应用地球物理, 2012, 9(1): 27-32.
[7] 郑静静, 印兴耀, 张广智, 武国虎, 张作胜. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4): 325-335.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司