APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2010, Vol. 7 Issue (3): 257-264    DOI: 10.1007/s11770-010-0245-6
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
多属性融合技术在苏14井区的应用研究
王兴建1,2,胡光岷1,曹俊兴2
1. 电子科技大学通信与信息工程学院,成都 610054
2. 成都理工大学信息工程学院,成都 610059
Application of multiple attributes fusion technology in the Su-14 Well Block
Wang Xing-Jian1,2, Hu Guang-Min1, and Cao Jun-Xing2
1. School of Communication and Information Engineering, UESTC, Chengdu 610054, China.
2. College of Information Engineering, Chengdu University of Technology, Chengdu 610059, China.
 全文: PDF (4598 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 苏14井区属苏里格气田,地质情况十分复杂,主要表现为砂岩发育,但有效砂岩非均质性强,横向变化大,厚度较薄,在垂向上分布比较分散。属性分析已是目前寻找非构造油气藏的有效手段之一。本文利用叠前地震资料、叠前纵横波联合反演结果和叠后属性进行属性融合,不但保留了叠前所含的流体信息,而且利用了叠后数据的高信噪比特点。采用单步递归方法从多个属性中寻找最优的属性组合,利用概率神经网络方法训练测井曲线与地震属性之间的非线性关系,并用训练样本预测苏14井区的自然咖玛,提高地震资料的分辨率,较好地预测苏14井区的有效储层分布范围,为储层精细描述提供依据。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
王兴建
胡光岷
曹俊兴
关键词多属性融合   神经网络   交互验证   苏14井区     
Abstract: In this study area the geological conditions are complicated and the effective sandstone is very heterogeneous. The sandstones are thin and lateral and vertical variations are large. We introduce multi-attribute fusion technology based on pre-stack seismic data, pre-stack P- and S-wave inversion results, and post-stack attributes. This method not only can keep the fluid information contained in pre-stack seismic data but also make use of the high SNR characteristics of post-stack data. First, we use a one-step recursive method to get the optimal attribute combination from a number of attributes. Second, we use a probabilistic neural network method to train the nonlinear relationship between log curves and seismic attributes and then use the trained samples to find the natural gamma ray distribution in the Su-14 well block and improve the resolution of seismic data. Finally, we predict the effective reservoir distribution in the Su-14 well block.
Key wordsmultiple attributes fusion   neural network   interactive validation   Su-14 well block   
收稿日期: 2009-02-19;
基金资助:

本研究由国家自然科学基金委员会与中国石油化工股份有限公司联合基金资助项目(40839905,40739907)资助。

引用本文:   
王兴建,胡光岷,曹俊兴. 多属性融合技术在苏14井区的应用研究[J]. 应用地球物理, 2010, 7(3): 257-264.
WANG Xing-Jian,HU Guang-Min,CAO Jun-Xing. Application of multiple attributes fusion technology in the Su-14 Well Block[J]. APPLIED GEOPHYSICS, 2010, 7(3): 257-264.
 
[1] Barnes, A. E., 1999, Seismic attributes past, present, and future: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 892 - 895.
[2] Cao, H., 2002, Some cognition on the application of seismic attributes: Progress in Exploration Geophysics, 25(5), 18 - 22.
[3] Chen, Z. D., 1998, Reservoir seismic attribute optimization method: Petroleum Industry Press.
[4] Davies, D. K, Vessell, R. K., and Bernal, M. C., 1996, Flow unit modeling in complex reservoirs: Annual Convention, American Association of Petroleum Geologists, 5, pp.33.
[5] Guo, J. L, and Chen, C., 2006, Application of stochastic simulation methods in predicting effective distribution of sand bodies in the Sulige- 6 Well Block: Journal of Jianghan Petroleum Institute, 28(5), 54 - 57.
[6] Hampson, D. P., Schuelke, J. S., and Quirein, J. A., 2001, Use of multiattribute transforms to predict log properties from seismic data: Geophysics, 66(1), 220 - 236.
[7] Neves, F. A., and Triebwasser, H., 2006, Multi-attribute seismic volume facies classification for predicting fractures in carbonate reservoirs: The Leading Edge, vol 25(2), 698 - 700
[8] Russell, B., Hampson, D., Schuelke, J., and Quiren, J., 1997, Multiattribute seismic analysis: The Leading Edge, 16(10), 1439 - 1444.
[9] Russell, B., Ross, C. P. and Lines, L., 2002, Neural networks and AVO: The Leading Edge, 21(3), 268 - 277.
[10] Sukmono, S., and Santoso, D.,2006,Integrating seismic attributes for reservoir characterization in Melandong Field,Indonesia:The Leading Edge,vol 25(2), 532 - 538
[11] Yi, C. X., 1995, Nonlinear science and its application in geology: Beijing Meteorological Press.
[1] 刘致宁,宋承云,李志勇,蔡涵鹏,姚兴苗,胡光岷. 基于多地震属性融合分割的地质异常体三维模型构建[J]. 应用地球物理, 2016, 13(3): 519-528.
[2] 江沸菠,戴前伟,董莉. 基于剪枝贝叶斯神经网络的电阻率成像非线性反演[J]. 应用地球物理, 2016, 13(2): 267-278.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司