APPLIED GEOPHYSICS
 
        首页  |  版权声明  |  期刊介绍  |  编 委 会  |  收录情况  |  期刊订阅  |  下载中心  |  联系我们  |  English
应用地球物理  2012, Vol. 9 Issue (4): 440-450    DOI: 10.1007/s11770-012-0356-y
论文 最新目录 | 下期目录 | 过刊浏览 | 高级检索 Previous Articles  |  Next Articles  
基于小生境遗传算法的双相裂隙介质储层参数反演
张生强1,韩立国1,刘春成2,张益明2,巩向博1
1. 吉林大学 地球探测科学与技术学院,长春 130026
2. 中海油研究总院,北京 100027
Inverting reservoir parameters in a two-phase fractured medium with a niche genetic algorithm
Zhang Sheng-Qiang1, Han Li-Guo1, Liu Chun-Cheng2, Zhang Yi-Ming2, and Gong Xiang-Bo1
1. College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, China.
2. CNOOC Research Institute, Beijing 100027, China.
 全文: PDF (972 KB)   HTML ( KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 本文针对双相介质波动方程参数的反演问题,根据介质表面理论合成的位移响应应与实际测量数据相一致的原则,引入最小二乘原理和小生境遗传算法,建立起了基于BISQ模型双相裂隙介质的小生境多参数(孔隙度、固相密度和流相密度)联合反演算法。最后,以基于BISQ模型的二维半空间双相裂隙介质模型为例,进行了数值反演分析。数值分析结果表明:本文方法对双相介质波动方程参数反演问题求解方便,且具有较强的抗“噪声”干扰性能;相对常规遗传算法,基于共享函数的小生境遗传算法不仅可以明显加快收敛速度,而且还可以有效提高反演精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张生强
韩立国
刘春成
张益明
巩向博
关键词参数反演   小生境遗传算法   BISQ模型   双相裂隙介质   波动方程     
Abstract: In this paper we calculate a synthetic medium surface displacement response that is consistent with real measurement data by applying the least-square principle and a niche genetic algorithm to the parameters inversion problem of the wave equation in a two-phase medium. We propose a niche genetic multi-parameter (including porosity, solid phase density and fluid phase density) joint inversion algorithm based on a two-phase fractured medium in the BISQ model. We take the two-phase fractured medium of the BISQ model in a two-dimensional half space as an example, and carry out the numerical reservoir parameters inversion. Results show that this method is very convenient for solving the parameters inversion problem for the wave equation in a two-phase medium, and has the advantage of strong noise rejection. Relative to conventional genetic algorithms, the niche genetic algorithm based on a sharing function can not only significantly speed up the convergence, but also improve the inversion precision.
Key wordsParameters inversion   niche genetic algorithm   BISQ model   two-phase fractured medium   wave equation   
收稿日期: 2012-05-30;
基金资助:

本研究由国家科技重大专项(2011ZX05025-001-07)资助。

引用本文:   
张生强,韩立国,刘春成等. 基于小生境遗传算法的双相裂隙介质储层参数反演[J]. 应用地球物理, 2012, 9(4): 440-450.
ZHANG Sheng-Qiang,HAN Li-Guo,LIU Chun-Cheng et al. Inverting reservoir parameters in a two-phase fractured medium with a niche genetic algorithm[J]. APPLIED GEOPHYSICS, 2012, 9(4): 440-450.
 
[1] Biot, M. A., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range: The Acoustical Society of America, 28(2), 168 - 178.
[2] Biot, M.A., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range: The Acoustical Society of America, 28(2), 179 - 191.
[3] Dvorkin, J., and Nur, A., 1993, Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms: Geophysics, 58(4), 524 - 533.
[4] Dvorkin, J., Nolen-Hoeksema, R., and Nur, A., 1994, The squirt-flow mechanism: Macroscopic description: Geophysics, 59(3), 428 - 438.
[5] Deb, K., and Goldberg, D. E., 1989, An investigation of niche and species formation in genetic function optimization: The3rd International Conference on Genetic Algorithms, 42 - 50.
[6] Deb, K., and Agrawal, R. B., 1994, Simulated binary crossover for continuous search space: Complex Systems, 1(9), 115 - 148.
[7] Frind, E.O., and Pinder, G.F., 1973, Galerkin solution of the inverse problem for aquifer transmissivity: Water Resources Research, 9(5), 1397 - 1410.
[8] Goldberg, D. E., and Richardson, J. J.,1987, Genetic algorithms with sharing for multimodal function optimization: Genetic algorithms and their application: Proceedings of the Second International Conference on Genetic Algorithms, 41 - 49.
[9] Han, H., Zhang, Z. M., and Wei, P. J., 2003, Homotopy method for inversing two parameters of 2-D wave equation in porous media: Engineering Mechanics (in Chinese), 20(4), 110 - 115.
[10] Liu, K. A., Liu, H. W., Guo, B. Q., Guan,Y. J., Zhang, X. J., and Gao, X. Y., 1997, Time-convolution regularization iteration for simultaneous inversion of three parameters of 2-D wave equation in two-phase medium: Oil Geophysical Prospecting(in Chinese), 32(5), 615 - 622.
[11] Liu, W. G., and Quan, D. Y., 1998, An approach to inverse porosity in a fluid-saturated porous solid: Journal of Harbin Institute of Technology (in Chinese), 30(4), 1 - 3.
[12] Meng, Q. S., 2003, A study on numerical modeling of elastic wave field and azimuth characteristic in double-phase crack media based on BISQ model: PhD Thesis, Jilin University, Changchun.
[13] Nie, J. X., Yang, D. H., and Yang, H. Z., 2004, Inversion of reservoir parameters based on the BISQ model in partially saturated porous media: Chinese Journal of Geophysics (in Chinese), 47(6), 1101 - 1105.
[14] Tian, D. P., 2007, An adaptive genetic algorithm combining with chaos searching: M. Sc Thesis, Shanghai Normal University, Shanghai.
[15] Virieux, J., 1986, P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method: Geophysics, 51(4), 889 - 901.
[16] Wang, Z. J., He, Q. D., and Wang, D. L., 2008, The numerical simulation for a 3D two-phase anisotropic medium based on BISQ model: Applied Geophysics, 5(1), 24 - 34.
[17] Wei, P. J., Zhang, Z. M., and Han, H., 2002, Parameter inverse of porous media by genetic algorithms: Acta Mechanica Solida Sinica (in Chinese), 23(4), 459 - 462.
[18] Xu, D., 2008, Nonlinear inversion of two-phase medium reservoir parameter: PhD Thesis, Chengdu University of Technology, Chengdu.
[19] Yang, D. H., and Zhang, Z. J., 2002, Poroelastic wave equation including the Biot/squirt mechanism and the solid/fluid coupling anisotropy: Wave Motion, 35(3), 223 - 245.
[20] Yang, D. H., and Zhang, Z. J., 2000, Effects of the Biot and the squirt-flow coupling interaction on anisotropic elastic waves: Chinese Science Bulletin, 45(23), 2130 - 2138.
[21] Yang, K. D., Yang, D. H., and Wang, S. Q., 2002, Wave-field simulation based on the Biot-Squirt equation: Chinese Journal of Geophysics(in Chinese), 45(6), 853 - 861.
[22] Zhang, X. M., Zhou, C. Y., Liu, J. Q., and Liu, K. A., 2009, Multiparameter inversion in the fluid-saturated porous medium with wavelet multiscale-regularized gauss newton method: Journal of Basic Science and Engineering (in Chinese), 17(4), 580 - 589.
[23] Zhang, X. W., 2010, The reservoir seismic prediction technology and reservoir geophysics parameters inversion: PhD Thesis, Jilin University, Changchun.
[24] Zhou, M., and Sun, S. D., 1999, Genetic algorithms: Theory and applications: National Defence Industrial Press, Beijing.
[25] Zhang, X. J., 2001, Genetic algorithm optimization and its application in inversion of geophysical parameters: M.Sc Thesis, Tsinghua University, Beijing.
[1] 张宫, 李宁, 郭宏伟, 武宏亮, 罗超. 远探测声反射波测井裂缝识别条件分析[J]. 应用地球物理, 2015, 12(4): 473-481.
[2] 麻纪强, 耿建华. 基于Cauchy先验分布的AVO弹性参数弱非线性波形反演[J]. 应用地球物理, 2013, 10(4): 442-452.
[3] 段玉婷, 胡天跃, 姚逢昌, 张研. 基于精细积分法的三维弹性波数值模拟[J]. 应用地球物理, 2013, 10(1): 71-78.
[4] 蒋炼, 文晓涛, 周东红, 贺振华, 贺锡雷. 碳酸盐岩孔隙结构参数构建与储层参数反演[J]. 应用地球物理, 2012, 9(2): 223-232.
[5] 宋建勇, 郑晓东, 秦臻, 苏本玉. 基于多网格的频率域全波形反演[J]. 应用地球物理, 2011, 8(4): 303-310.
[6] 宋建勇, 郑晓东, 张研, 徐基祥, 秦臻, 宋雪娟. 基于静主元消元法的频率域波动方程正演[J]. 应用地球物理, 2011, 8(1): 60-68.
[7] 周辉, 王尚旭, 李国发, 沈金松. 复杂构造地震波场分析[J]. 应用地球物理, 2010, 7(2): 185-192.
[8] 王祥春, 夏常亮, 刘学伟. 消除海底起伏影响的海洋地震波场正反向延拓[J]. 应用地球物理, 2010, 7(2): 149-157.
[9] 杜启振, 李宾, 侯波. 横向各向同性介质紧致交错网格有限差分波场模拟[J]. 应用地球物理, 2009, 6(1): 42-49.
版权所有 © 2011 应用地球物理
技术支持 北京玛格泰克科技发展有限公司